File size: 13,002 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
 
 
da48dbe
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from lib.dataset.mesh_util import projection
from lib.common.render import Render
import numpy as np
import torch
from torchvision.utils import make_grid
from pytorch3d import _C
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from pytorch3d.structures import Pointclouds
from PIL import Image

from typing import Tuple
from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals
from pytorch3d.ops.packed_to_padded import packed_to_padded

_DEFAULT_MIN_TRIANGLE_AREA: float = 5e-3


# PointFaceDistance
class _PointFaceDistance(Function):
    """
    Torch autograd Function wrapper PointFaceDistance Cuda implementation
    """
    @staticmethod
    def forward(
        ctx,
        points,
        points_first_idx,
        tris,
        tris_first_idx,
        max_points,
        min_triangle_area=_DEFAULT_MIN_TRIANGLE_AREA,
    ):
        """
        Args:
            ctx: Context object used to calculate gradients.
            points: FloatTensor of shape `(P, 3)`
            points_first_idx: LongTensor of shape `(N,)` indicating the first point
                index in each example in the batch
            tris: FloatTensor of shape `(T, 3, 3)` of triangular faces. The `t`-th
                triangular face is spanned by `(tris[t, 0], tris[t, 1], tris[t, 2])`
            tris_first_idx: LongTensor of shape `(N,)` indicating the first face
                index in each example in the batch
            max_points: Scalar equal to maximum number of points in the batch
            min_triangle_area: (float, defaulted) Triangles of area less than this
                will be treated as points/lines.
        Returns:
            dists: FloatTensor of shape `(P,)`, where `dists[p]` is the squared
                euclidean distance of `p`-th point to the closest triangular face
                in the corresponding example in the batch
            idxs: LongTensor of shape `(P,)` indicating the closest triangular face
                in the corresponding example in the batch.

            `dists[p]` is
            `d(points[p], tris[idxs[p], 0], tris[idxs[p], 1], tris[idxs[p], 2])`
            where `d(u, v0, v1, v2)` is the distance of point `u` from the triangular
            face `(v0, v1, v2)`

        """
        dists, idxs = _C.point_face_dist_forward(
            points,
            points_first_idx,
            tris,
            tris_first_idx,
            max_points,
            min_triangle_area,
        )
        ctx.save_for_backward(points, tris, idxs)
        ctx.min_triangle_area = min_triangle_area
        return dists, idxs

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_dists):
        grad_dists = grad_dists.contiguous()
        points, tris, idxs = ctx.saved_tensors
        min_triangle_area = ctx.min_triangle_area
        grad_points, grad_tris = _C.point_face_dist_backward(
            points, tris, idxs, grad_dists, min_triangle_area
        )
        return grad_points, None, grad_tris, None, None, None


def _rand_barycentric_coords(
    size1, size2, dtype: torch.dtype, device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Helper function to generate random barycentric coordinates which are uniformly
    distributed over a triangle.

    Args:
        size1, size2: The number of coordinates generated will be size1*size2.
                      Output tensors will each be of shape (size1, size2).
        dtype: Datatype to generate.
        device: A torch.device object on which the outputs will be allocated.

    Returns:
        w0, w1, w2: Tensors of shape (size1, size2) giving random barycentric
            coordinates
    """
    uv = torch.rand(2, size1, size2, dtype=dtype, device=device)
    u, v = uv[0], uv[1]
    u_sqrt = u.sqrt()
    w0 = 1.0 - u_sqrt
    w1 = u_sqrt * (1.0 - v)
    w2 = u_sqrt * v
    w = torch.cat([w0[..., None], w1[..., None], w2[..., None]], dim=2)

    return w


def sample_points_from_meshes(meshes, num_samples: int = 10000):
    """
    Convert a batch of meshes to a batch of pointclouds by uniformly sampling
    points on the surface of the mesh with probability proportional to the
    face area.

    Args:
        meshes: A Meshes object with a batch of N meshes.
        num_samples: Integer giving the number of point samples per mesh.
        return_normals: If True, return normals for the sampled points.
        return_textures: If True, return textures for the sampled points.

    Returns:
        3-element tuple containing

        - **samples**: FloatTensor of shape (N, num_samples, 3) giving the
          coordinates of sampled points for each mesh in the batch. For empty
          meshes the corresponding row in the samples array will be filled with 0.
        - **normals**: FloatTensor of shape (N, num_samples, 3) giving a normal vector
          to each sampled point. Only returned if return_normals is True.
          For empty meshes the corresponding row in the normals array will
          be filled with 0.
        - **textures**: FloatTensor of shape (N, num_samples, C) giving a C-dimensional
          texture vector to each sampled point. Only returned if return_textures is True.
          For empty meshes the corresponding row in the textures array will
          be filled with 0.

        Note that in a future releases, we will replace the 3-element tuple output
        with a `Pointclouds` datastructure, as follows

        .. code-block:: python

            Pointclouds(samples, normals=normals, features=textures)
    """
    if meshes.isempty():
        raise ValueError("Meshes are empty.")

    verts = meshes.verts_packed()
    if not torch.isfinite(verts).all():
        raise ValueError("Meshes contain nan or inf.")

    faces = meshes.faces_packed()
    mesh_to_face = meshes.mesh_to_faces_packed_first_idx()
    num_meshes = len(meshes)
    num_valid_meshes = torch.sum(meshes.valid)    # Non empty meshes.

    # Initialize samples tensor with fill value 0 for empty meshes.
    samples = torch.zeros((num_meshes, num_samples, 3), device=meshes.device)

    # Only compute samples for non empty meshes
    with torch.no_grad():
        areas, _ = mesh_face_areas_normals(verts, faces)    # Face areas can be zero.
        max_faces = meshes.num_faces_per_mesh().max().item()
        areas_padded = packed_to_padded(areas, mesh_to_face[meshes.valid], max_faces)    # (N, F)

        # TODO (gkioxari) Confirm multinomial bug is not present with real data.
        samples_face_idxs = areas_padded.multinomial(
            num_samples, replacement=True
        )    # (N, num_samples)
        samples_face_idxs += mesh_to_face[meshes.valid].view(num_valid_meshes, 1)

    # Randomly generate barycentric coords.
    # w                 (N, num_samples, 3)
    # sample_face_idxs  (N, num_samples)
    # samples_verts     (N, num_samples, 3, 3)

    samples_bw = _rand_barycentric_coords(num_valid_meshes, num_samples, verts.dtype, verts.device)
    sample_verts = verts[faces][samples_face_idxs]
    samples[meshes.valid] = (sample_verts * samples_bw[..., None]).sum(dim=-2)

    return samples, samples_face_idxs, samples_bw


def point_mesh_distance(meshes, pcls, weighted=True):

    if len(meshes) != len(pcls):
        raise ValueError("meshes and pointclouds must be equal sized batches")

    # packed representation for pointclouds
    points = pcls.points_packed()    # (P, 3)
    points_first_idx = pcls.cloud_to_packed_first_idx()
    max_points = pcls.num_points_per_cloud().max().item()

    # packed representation for faces
    verts_packed = meshes.verts_packed()
    faces_packed = meshes.faces_packed()
    tris = verts_packed[faces_packed]    # (T, 3, 3)
    tris_first_idx = meshes.mesh_to_faces_packed_first_idx()

    # point to face distance: shape (P,)
    point_to_face, idxs = _PointFaceDistance.apply(
        points, points_first_idx, tris, tris_first_idx, max_points, 5e-3
    )

    if weighted:
        # weight each example by the inverse of number of points in the example
        point_to_cloud_idx = pcls.packed_to_cloud_idx()    # (sum(P_i),)
        num_points_per_cloud = pcls.num_points_per_cloud()    # (N,)
        weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
        weights_p = 1.0 / weights_p.float()
        point_to_face = torch.sqrt(point_to_face) * weights_p

    return point_to_face, idxs


class Evaluator:
    def __init__(self, device):

        self.render = Render(size=512, device=device)
        self.device = device

    def set_mesh(self, result_dict, scale=True):

        for k, v in result_dict.items():
            setattr(self, k, v)
        if scale:
            self.verts_pr -= self.recon_size / 2.0
            self.verts_pr /= self.recon_size / 2.0
        self.verts_gt = projection(self.verts_gt, self.calib)
        self.verts_gt[:, 1] *= -1

        self.render.load_meshes(self.verts_pr, self.faces_pr)
        self.src_mesh = self.render.meshes
        self.render.load_meshes(self.verts_gt, self.faces_gt)
        self.tgt_mesh = self.render.meshes

    def calculate_normal_consist(self, normal_path):

        self.render.meshes = self.src_mesh
        src_normal_imgs = self.render.get_image(cam_type="four", bg="black")
        self.render.meshes = self.tgt_mesh
        tgt_normal_imgs = self.render.get_image(cam_type="four", bg="black")

        src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4, padding=0)    # [-1,1]
        tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4, padding=0)    # [-1,1]
        src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
        tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)

        src_norm[src_norm == 0.0] = 1.0
        tgt_norm[tgt_norm == 0.0] = 1.0

        src_normal_arr /= src_norm
        tgt_normal_arr /= tgt_norm

        # sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device)

        src_normal_arr = (src_normal_arr + 1.0) * 0.5
        tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5

        error = (((src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4.0

        # error_hf = ((((src_normal_arr - tgt_normal_arr) * sim_mask)**2).sum(dim=0).mean()) * 4.0

        normal_img = Image.fromarray(
            (
                torch.cat([src_normal_arr, tgt_normal_arr],
                          dim=1).permute(1, 2, 0).detach().cpu().numpy() * 255.0
            ).astype(np.uint8)
        )
        normal_img.save(normal_path)

        return error

    def calculate_chamfer_p2s(self, num_samples=1000):

        samples_tgt, _, _ = sample_points_from_meshes(self.tgt_mesh, num_samples)
        samples_src, _, _ = sample_points_from_meshes(self.src_mesh, num_samples)

        tgt_points = Pointclouds(samples_tgt)
        src_points = Pointclouds(samples_src)

        p2s_dist_all, _ = point_mesh_distance(self.src_mesh, tgt_points) * 100.0
        p2s_dist = p2s_dist_all.sum()

        chamfer_dist = (
            point_mesh_distance(self.tgt_mesh, src_points)[0].sum() * 100.0 + p2s_dist
        ) * 0.5

        return chamfer_dist, p2s_dist

    def calc_acc(self, output, target, thres=0.5, use_sdf=False):

        # # remove the surface points with thres
        # non_surf_ids = (target != thres)
        # output = output[non_surf_ids]
        # target = target[non_surf_ids]

        with torch.no_grad():
            output = output.masked_fill(output < thres, 0.0)
            output = output.masked_fill(output > thres, 1.0)

            if use_sdf:
                target = target.masked_fill(target < thres, 0.0)
                target = target.masked_fill(target > thres, 1.0)

            acc = output.eq(target).float().mean()

            # iou, precison, recall
            output = output > thres
            target = target > thres

            union = output | target
            inter = output & target

            _max = torch.tensor(1.0).to(output.device)

            union = max(union.sum().float(), _max)
            true_pos = max(inter.sum().float(), _max)
            vol_pred = max(output.sum().float(), _max)
            vol_gt = max(target.sum().float(), _max)

            return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt