Spaces:
Runtime error
Runtime error
File size: 10,233 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import warnings
import logging
warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)
from lib.pixielib.utils.config import cfg as pixie_cfg
from lib.pixielib.pixie import PIXIE
from lib.pixielib.models.SMPLX import SMPLX as PIXIE_SMPLX
from lib.common.imutils import process_image
from lib.common.train_util import Format
from lib.net.geometry import rotation_matrix_to_angle_axis, rot6d_to_rotmat
from lib.pymafx.core import path_config
from lib.pymafx.models import pymaf_net
from lib.common.config import cfg
from lib.common.render import Render
from lib.dataset.body_model import TetraSMPLModel
from lib.dataset.mesh_util import get_visibility, SMPLX
import torch.nn.functional as F
from torchvision import transforms
from torchvision.models import detection
import os.path as osp
import torch
import glob
import numpy as np
from termcolor import colored
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
class TestDataset:
def __init__(self, cfg, device):
self.image_dir = cfg["image_dir"]
self.seg_dir = cfg["seg_dir"]
self.use_seg = cfg["use_seg"]
self.hps_type = cfg["hps_type"]
self.smpl_type = "smplx"
self.smpl_gender = "neutral"
self.vol_res = cfg["vol_res"]
self.single = cfg["single"]
self.device = device
keep_lst = sorted(glob.glob(f"{self.image_dir}/*"))
img_fmts = ["jpg", "png", "jpeg", "JPG", "bmp"]
self.subject_list = sorted(
[item for item in keep_lst if item.split(".")[-1] in img_fmts], reverse=False
)
# smpl related
self.smpl_data = SMPLX()
if self.hps_type == "pymafx":
self.hps = pymaf_net(path_config.SMPL_MEAN_PARAMS, pretrained=True).to(self.device)
self.hps.load_state_dict(torch.load(path_config.CHECKPOINT_FILE)["model"], strict=True)
self.hps.eval()
pixie_cfg.merge_from_list(["model.n_shape", 10, "model.n_exp", 10])
elif self.hps_type == "pixie":
self.hps = PIXIE(config=pixie_cfg, device=self.device)
self.smpl_model = PIXIE_SMPLX(pixie_cfg.model).to(self.device)
self.detector = detection.maskrcnn_resnet50_fpn(
weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights
)
self.detector.eval()
print(
colored(
f"SMPL-X estimate with {Format.start} {self.hps_type.upper()} {Format.end}", "green"
)
)
self.render = Render(size=512, device=self.device)
def __len__(self):
return len(self.subject_list)
def compute_vis_cmap(self, smpl_verts, smpl_faces):
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=-1)
smpl_vis = get_visibility(xy, z,
torch.as_tensor(smpl_faces).long()[:, :,
[0, 2, 1]]).unsqueeze(-1)
smpl_cmap = self.smpl_data.cmap_smpl_vids(self.smpl_type).unsqueeze(0)
return {
"smpl_vis": smpl_vis.to(self.device),
"smpl_cmap": smpl_cmap.to(self.device),
"smpl_verts": smpl_verts,
}
def depth_to_voxel(self, data_dict):
data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"])
data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"])
depth_mask = (~torch.isnan(data_dict['depth_F']))
depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0)
depth_FB[:, ~depth_mask[0]] = 0.
# Important: index_long = depth_value - 1
index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res -
1).permute(1, 2, 0)
index_z_ceil = torch.ceil(index_z).long()
index_z_floor = torch.floor(index_z).long()
index_z_frac = torch.frac(index_z)
index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long()
voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \
F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \
F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \
F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1])
voxels[index_mask] *= 0
voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float() #[x-2, y-0, z-1]
return {
"depth_voxels": voxels.flip([
0,
]).unsqueeze(0).to(self.device),
}
def compute_voxel_verts(self, body_pose, global_orient, betas, trans, scale):
smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl")
tetra_path = osp.join(self.smpl_data.tedra_dir, "tetra_neutral_adult_smpl.npz")
smpl_model = TetraSMPLModel(smpl_path, tetra_path, "adult")
pose = torch.cat([global_orient[0], body_pose[0]], dim=0)
smpl_model.set_params(rotation_matrix_to_angle_axis(rot6d_to_rotmat(pose)), beta=betas[0])
verts = (
np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * scale.item() +
trans.detach().cpu().numpy()
)
faces = (
np.loadtxt(
osp.join(self.smpl_data.tedra_dir, "tetrahedrons_neutral_adult.txt"),
dtype=np.int32,
) - 1
)
pad_v_num = int(8000 - verts.shape[0])
pad_f_num = int(25100 - faces.shape[0])
verts = (
np.pad(verts, ((0, pad_v_num),
(0, 0)), mode="constant", constant_values=0.0).astype(np.float32) * 0.5
)
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode="constant",
constant_values=0.0).astype(np.int32)
verts[:, 2] *= -1.0
voxel_dict = {
"voxel_verts": torch.from_numpy(verts).to(self.device).unsqueeze(0).float(),
"voxel_faces": torch.from_numpy(faces).to(self.device).unsqueeze(0).long(),
"pad_v_num": torch.tensor(pad_v_num).to(self.device).unsqueeze(0).long(),
"pad_f_num": torch.tensor(pad_f_num).to(self.device).unsqueeze(0).long(),
}
return voxel_dict
def __getitem__(self, index):
img_path = self.subject_list[index]
img_name = img_path.split("/")[-1].rsplit(".", 1)[0]
arr_dict = process_image(img_path, self.hps_type, self.single, 512, self.detector)
arr_dict.update({"name": img_name})
with torch.no_grad():
if self.hps_type == "pixie":
preds_dict = self.hps.forward(arr_dict["img_hps"].to(self.device))
elif self.hps_type == 'pymafx':
batch = {k: v.to(self.device) for k, v in arr_dict["img_pymafx"].items()}
preds_dict, _ = self.hps.forward(batch)
arr_dict["smpl_faces"] = (
torch.as_tensor(self.smpl_data.smplx_faces.astype(np.int64)).unsqueeze(0).long().to(
self.device
)
)
arr_dict["type"] = self.smpl_type
if self.hps_type == "pymafx":
output = preds_dict["mesh_out"][-1]
scale, tranX, tranY = output["theta"][:, :3].split(1, dim=1)
arr_dict["betas"] = output["pred_shape"]
arr_dict["body_pose"] = output["rotmat"][:, 1:22]
arr_dict["global_orient"] = output["rotmat"][:, 0:1]
arr_dict["smpl_verts"] = output["smplx_verts"]
arr_dict["left_hand_pose"] = output["pred_lhand_rotmat"]
arr_dict["right_hand_pose"] = output["pred_rhand_rotmat"]
arr_dict['jaw_pose'] = output['pred_face_rotmat'][:, 0:1]
arr_dict["exp"] = output["pred_exp"]
# 1.2009, 0.0013, 0.3954
elif self.hps_type == "pixie":
arr_dict.update(preds_dict)
arr_dict["global_orient"] = preds_dict["global_pose"]
arr_dict["betas"] = preds_dict["shape"] #200
arr_dict["smpl_verts"] = preds_dict["vertices"]
scale, tranX, tranY = preds_dict["cam"].split(1, dim=1)
# 1.1435, 0.0128, 0.3520
arr_dict["scale"] = scale.unsqueeze(1)
arr_dict["trans"] = (
torch.cat([tranX, tranY, torch.zeros_like(tranX)],
dim=1).unsqueeze(1).to(self.device).float()
)
# data_dict info (key-shape):
# scale, tranX, tranY - tensor.float
# betas - [1,10] / [1, 200]
# body_pose - [1, 23, 3, 3] / [1, 21, 3, 3]
# global_orient - [1, 1, 3, 3]
# smpl_verts - [1, 6890, 3] / [1, 10475, 3]
# from rot_mat to rot_6d for better optimization
N_body, N_pose = arr_dict["body_pose"].shape[:2]
arr_dict["body_pose"] = arr_dict["body_pose"][:, :, :, :2].reshape(N_body, N_pose, -1)
arr_dict["global_orient"] = arr_dict["global_orient"][:, :, :, :2].reshape(N_body, 1, -1)
return arr_dict
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image(type="rgb")
def render_depth(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image(type="depth")
|