File size: 10,233 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import warnings
import logging

warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)

from lib.pixielib.utils.config import cfg as pixie_cfg
from lib.pixielib.pixie import PIXIE
from lib.pixielib.models.SMPLX import SMPLX as PIXIE_SMPLX
from lib.common.imutils import process_image
from lib.common.train_util import Format
from lib.net.geometry import rotation_matrix_to_angle_axis, rot6d_to_rotmat

from lib.pymafx.core import path_config
from lib.pymafx.models import pymaf_net

from lib.common.config import cfg
from lib.common.render import Render
from lib.dataset.body_model import TetraSMPLModel
from lib.dataset.mesh_util import get_visibility, SMPLX
import torch.nn.functional as F
from torchvision import transforms
from torchvision.models import detection

import os.path as osp
import torch
import glob
import numpy as np
from termcolor import colored
from PIL import ImageFile

ImageFile.LOAD_TRUNCATED_IMAGES = True


class TestDataset:
    def __init__(self, cfg, device):

        self.image_dir = cfg["image_dir"]
        self.seg_dir = cfg["seg_dir"]
        self.use_seg = cfg["use_seg"]
        self.hps_type = cfg["hps_type"]
        self.smpl_type = "smplx"
        self.smpl_gender = "neutral"
        self.vol_res = cfg["vol_res"]
        self.single = cfg["single"]

        self.device = device

        keep_lst = sorted(glob.glob(f"{self.image_dir}/*"))
        img_fmts = ["jpg", "png", "jpeg", "JPG", "bmp"]

        self.subject_list = sorted(
            [item for item in keep_lst if item.split(".")[-1] in img_fmts], reverse=False
        )

        # smpl related
        self.smpl_data = SMPLX()

        if self.hps_type == "pymafx":
            self.hps = pymaf_net(path_config.SMPL_MEAN_PARAMS, pretrained=True).to(self.device)
            self.hps.load_state_dict(torch.load(path_config.CHECKPOINT_FILE)["model"], strict=True)
            self.hps.eval()
            pixie_cfg.merge_from_list(["model.n_shape", 10, "model.n_exp", 10])
        elif self.hps_type == "pixie":
            self.hps = PIXIE(config=pixie_cfg, device=self.device)

        self.smpl_model = PIXIE_SMPLX(pixie_cfg.model).to(self.device)

        self.detector = detection.maskrcnn_resnet50_fpn(
            weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights
        )
        self.detector.eval()

        print(
            colored(
                f"SMPL-X estimate with {Format.start} {self.hps_type.upper()} {Format.end}", "green"
            )
        )

        self.render = Render(size=512, device=self.device)

    def __len__(self):
        return len(self.subject_list)

    def compute_vis_cmap(self, smpl_verts, smpl_faces):

        (xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=-1)
        smpl_vis = get_visibility(xy, z,
                                  torch.as_tensor(smpl_faces).long()[:, :,
                                                                     [0, 2, 1]]).unsqueeze(-1)
        smpl_cmap = self.smpl_data.cmap_smpl_vids(self.smpl_type).unsqueeze(0)

        return {
            "smpl_vis": smpl_vis.to(self.device),
            "smpl_cmap": smpl_cmap.to(self.device),
            "smpl_verts": smpl_verts,
        }

    def depth_to_voxel(self, data_dict):

        data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"])
        data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"])

        depth_mask = (~torch.isnan(data_dict['depth_F']))
        depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0)
        depth_FB[:, ~depth_mask[0]] = 0.

        # Important: index_long = depth_value - 1
        index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res -
                                                                    1).permute(1, 2, 0)
        index_z_ceil = torch.ceil(index_z).long()
        index_z_floor = torch.floor(index_z).long()
        index_z_frac = torch.frac(index_z)

        index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long()
        voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \
            F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \
            F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \
            F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1])

        voxels[index_mask] *= 0
        voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float()    #[x-2, y-0, z-1]

        return {
            "depth_voxels": voxels.flip([
                0,
            ]).unsqueeze(0).to(self.device),
        }

    def compute_voxel_verts(self, body_pose, global_orient, betas, trans, scale):

        smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl")
        tetra_path = osp.join(self.smpl_data.tedra_dir, "tetra_neutral_adult_smpl.npz")
        smpl_model = TetraSMPLModel(smpl_path, tetra_path, "adult")

        pose = torch.cat([global_orient[0], body_pose[0]], dim=0)
        smpl_model.set_params(rotation_matrix_to_angle_axis(rot6d_to_rotmat(pose)), beta=betas[0])

        verts = (
            np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * scale.item() +
            trans.detach().cpu().numpy()
        )
        faces = (
            np.loadtxt(
                osp.join(self.smpl_data.tedra_dir, "tetrahedrons_neutral_adult.txt"),
                dtype=np.int32,
            ) - 1
        )

        pad_v_num = int(8000 - verts.shape[0])
        pad_f_num = int(25100 - faces.shape[0])

        verts = (
            np.pad(verts, ((0, pad_v_num),
                           (0, 0)), mode="constant", constant_values=0.0).astype(np.float32) * 0.5
        )
        faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode="constant",
                       constant_values=0.0).astype(np.int32)

        verts[:, 2] *= -1.0

        voxel_dict = {
            "voxel_verts": torch.from_numpy(verts).to(self.device).unsqueeze(0).float(),
            "voxel_faces": torch.from_numpy(faces).to(self.device).unsqueeze(0).long(),
            "pad_v_num": torch.tensor(pad_v_num).to(self.device).unsqueeze(0).long(),
            "pad_f_num": torch.tensor(pad_f_num).to(self.device).unsqueeze(0).long(),
        }

        return voxel_dict

    def __getitem__(self, index):

        img_path = self.subject_list[index]
        img_name = img_path.split("/")[-1].rsplit(".", 1)[0]

        arr_dict = process_image(img_path, self.hps_type, self.single, 512, self.detector)
        arr_dict.update({"name": img_name})

        with torch.no_grad():
            if self.hps_type == "pixie":
                preds_dict = self.hps.forward(arr_dict["img_hps"].to(self.device))
            elif self.hps_type == 'pymafx':
                batch = {k: v.to(self.device) for k, v in arr_dict["img_pymafx"].items()}
                preds_dict, _ = self.hps.forward(batch)

        arr_dict["smpl_faces"] = (
            torch.as_tensor(self.smpl_data.smplx_faces.astype(np.int64)).unsqueeze(0).long().to(
                self.device
            )
        )
        arr_dict["type"] = self.smpl_type

        if self.hps_type == "pymafx":
            output = preds_dict["mesh_out"][-1]
            scale, tranX, tranY = output["theta"][:, :3].split(1, dim=1)
            arr_dict["betas"] = output["pred_shape"]
            arr_dict["body_pose"] = output["rotmat"][:, 1:22]
            arr_dict["global_orient"] = output["rotmat"][:, 0:1]
            arr_dict["smpl_verts"] = output["smplx_verts"]
            arr_dict["left_hand_pose"] = output["pred_lhand_rotmat"]
            arr_dict["right_hand_pose"] = output["pred_rhand_rotmat"]
            arr_dict['jaw_pose'] = output['pred_face_rotmat'][:, 0:1]
            arr_dict["exp"] = output["pred_exp"]
            # 1.2009, 0.0013, 0.3954

        elif self.hps_type == "pixie":
            arr_dict.update(preds_dict)
            arr_dict["global_orient"] = preds_dict["global_pose"]
            arr_dict["betas"] = preds_dict["shape"]    #200
            arr_dict["smpl_verts"] = preds_dict["vertices"]
            scale, tranX, tranY = preds_dict["cam"].split(1, dim=1)
            # 1.1435, 0.0128, 0.3520

        arr_dict["scale"] = scale.unsqueeze(1)
        arr_dict["trans"] = (
            torch.cat([tranX, tranY, torch.zeros_like(tranX)],
                      dim=1).unsqueeze(1).to(self.device).float()
        )

        # data_dict info (key-shape):
        # scale, tranX, tranY - tensor.float
        # betas - [1,10] / [1, 200]
        # body_pose - [1, 23, 3, 3] / [1, 21, 3, 3]
        # global_orient - [1, 1, 3, 3]
        # smpl_verts - [1, 6890, 3] / [1, 10475, 3]

        # from rot_mat to rot_6d for better optimization
        N_body, N_pose = arr_dict["body_pose"].shape[:2]
        arr_dict["body_pose"] = arr_dict["body_pose"][:, :, :, :2].reshape(N_body, N_pose, -1)
        arr_dict["global_orient"] = arr_dict["global_orient"][:, :, :, :2].reshape(N_body, 1, -1)

        return arr_dict

    def render_normal(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_image(type="rgb")

    def render_depth(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_image(type="depth")