Spaces:
Runtime error
Runtime error
File size: 15,450 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
""" The code is based on https://github.com/apple/ml-gsn/ with adaption. """
import math
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from lib.torch_utils.ops.native_ops import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
class DiscriminatorHead(nn.Module):
def __init__(self, in_channel, disc_stddev=False):
super().__init__()
self.disc_stddev = disc_stddev
stddev_dim = 1 if disc_stddev else 0
self.conv_stddev = ConvLayer2d(
in_channel=in_channel + stddev_dim,
out_channel=in_channel,
kernel_size=3,
activate=True
)
self.final_linear = nn.Sequential(
nn.Flatten(),
EqualLinear(in_channel=in_channel * 4 * 4, out_channel=in_channel, activate=True),
EqualLinear(in_channel=in_channel, out_channel=1),
)
def cat_stddev(self, x, stddev_group=4, stddev_feat=1):
perm = torch.randperm(len(x))
inv_perm = torch.argsort(perm)
batch, channel, height, width = x.shape
x = x[perm
] # shuffle inputs so that all views in a single trajectory don't get put together
group = min(batch, stddev_group)
stddev = x.view(group, -1, stddev_feat, channel // stddev_feat, height, width)
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
stddev = stddev.repeat(group, 1, height, width)
stddev = stddev[inv_perm] # reorder inputs
x = x[inv_perm]
out = torch.cat([x, stddev], 1)
return out
def forward(self, x):
if self.disc_stddev:
x = self.cat_stddev(x)
x = self.conv_stddev(x)
out = self.final_linear(x)
return out
class ConvDecoder(nn.Module):
def __init__(self, in_channel, out_channel, in_res, out_res):
super().__init__()
log_size_in = int(math.log(in_res, 2))
log_size_out = int(math.log(out_res, 2))
self.layers = []
in_ch = in_channel
for i in range(log_size_in, log_size_out):
out_ch = in_ch // 2
self.layers.append(
ConvLayer2d(
in_channel=in_ch,
out_channel=out_ch,
kernel_size=3,
upsample=True,
bias=True,
activate=True
)
)
in_ch = out_ch
self.layers.append(
ConvLayer2d(
in_channel=in_ch, out_channel=out_channel, kernel_size=3, bias=True, activate=False
)
)
self.layers = nn.Sequential(*self.layers)
def forward(self, x):
return self.layers(x)
class StyleDiscriminator(nn.Module):
def __init__(self, in_channel, in_res, ch_mul=64, ch_max=512, **kwargs):
super().__init__()
log_size_in = int(math.log(in_res, 2))
log_size_out = int(math.log(4, 2))
self.conv_in = ConvLayer2d(in_channel=in_channel, out_channel=ch_mul, kernel_size=3)
# each resblock will half the resolution and double the number of features (until a maximum of ch_max)
self.layers = []
in_channels = ch_mul
for i in range(log_size_in, log_size_out, -1):
out_channels = int(min(in_channels * 2, ch_max))
self.layers.append(
ConvResBlock2d(in_channel=in_channels, out_channel=out_channels, downsample=True)
)
in_channels = out_channels
self.layers = nn.Sequential(*self.layers)
self.disc_out = DiscriminatorHead(in_channel=in_channels, disc_stddev=True)
def forward(self, x):
x = self.conv_in(x)
x = self.layers(x)
out = self.disc_out(x)
return out
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class Blur(nn.Module):
"""Blur layer.
Applies a blur kernel to input image using finite impulse response filter. Blurring feature maps after
convolutional upsampling or before convolutional downsampling helps produces models that are more robust to
shifting inputs (https://richzhang.github.io/antialiased-cnns/). In the context of GANs, this can provide
cleaner gradients, and therefore more stable training.
Args:
----
kernel: list, int
A list of integers representing a blur kernel. For exmaple: [1, 3, 3, 1].
pad: tuple, int
A tuple of integers representing the number of rows/columns of padding to be added to the top/left and
the bottom/right respectively.
upsample_factor: int
Upsample factor.
"""
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * (upsample_factor**2)
self.register_buffer("kernel", kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class Upsample(nn.Module):
"""Upsampling layer.
Perform upsampling using a blur kernel.
Args:
----
kernel: list, int
A list of integers representing a blur kernel. For exmaple: [1, 3, 3, 1].
factor: int
Upsampling factor.
"""
def __init__(self, kernel=[1, 3, 3, 1], factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * (factor**2)
self.register_buffer("kernel", kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class Downsample(nn.Module):
"""Downsampling layer.
Perform downsampling using a blur kernel.
Args:
----
kernel: list, int
A list of integers representing a blur kernel. For exmaple: [1, 3, 3, 1].
factor: int
Downsampling factor.
"""
def __init__(self, kernel=[1, 3, 3, 1], factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel)
self.register_buffer("kernel", kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
return out
class EqualLinear(nn.Module):
"""Linear layer with equalized learning rate.
During the forward pass the weights are scaled by the inverse of the He constant (i.e. sqrt(in_dim)) to
prevent vanishing gradients and accelerate training. This constant only works for ReLU or LeakyReLU
activation functions.
Args:
----
in_channel: int
Input channels.
out_channel: int
Output channels.
bias: bool
Use bias term.
bias_init: float
Initial value for the bias.
lr_mul: float
Learning rate multiplier. By scaling weights and the bias we can proportionally scale the magnitude of
the gradients, effectively increasing/decreasing the learning rate for this layer.
activate: bool
Apply leakyReLU activation.
"""
def __init__(self, in_channel, out_channel, bias=True, bias_init=0, lr_mul=1, activate=False):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_channel, in_channel).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel).fill_(bias_init))
else:
self.bias = None
self.activate = activate
self.scale = (1 / math.sqrt(in_channel)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activate:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
return out
def __repr__(self):
return f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
class EqualConv2d(nn.Module):
"""2D convolution layer with equalized learning rate.
During the forward pass the weights are scaled by the inverse of the He constant (i.e. sqrt(in_dim)) to
prevent vanishing gradients and accelerate training. This constant only works for ReLU or LeakyReLU
activation functions.
Args:
----
in_channel: int
Input channels.
out_channel: int
Output channels.
kernel_size: int
Kernel size.
stride: int
Stride of convolutional kernel across the input.
padding: int
Amount of zero padding applied to both sides of the input.
bias: bool
Use bias term.
"""
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
self.scale = 1 / math.sqrt(in_channel * kernel_size**2)
self.stride = stride
self.padding = padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = F.conv2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding
)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
)
class EqualConvTranspose2d(nn.Module):
"""2D transpose convolution layer with equalized learning rate.
During the forward pass the weights are scaled by the inverse of the He constant (i.e. sqrt(in_dim)) to
prevent vanishing gradients and accelerate training. This constant only works for ReLU or LeakyReLU
activation functions.
Args:
----
in_channel: int
Input channels.
out_channel: int
Output channels.
kernel_size: int
Kernel size.
stride: int
Stride of convolutional kernel across the input.
padding: int
Amount of zero padding applied to both sides of the input.
output_padding: int
Extra padding added to input to achieve the desired output size.
bias: bool
Use bias term.
"""
def __init__(
self,
in_channel,
out_channel,
kernel_size,
stride=1,
padding=0,
output_padding=0,
bias=True
):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_channel, out_channel, kernel_size, kernel_size))
self.scale = 1 / math.sqrt(in_channel * kernel_size**2)
self.stride = stride
self.padding = padding
self.output_padding = output_padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = F.conv_transpose2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
output_padding=self.output_padding,
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[0]}, {self.weight.shape[1]},'
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
)
class ConvLayer2d(nn.Sequential):
def __init__(
self,
in_channel,
out_channel,
kernel_size=3,
upsample=False,
downsample=False,
blur_kernel=[1, 3, 3, 1],
bias=True,
activate=True,
):
assert not (upsample and downsample), 'Cannot upsample and downsample simultaneously'
layers = []
if upsample:
factor = 2
p = (len(blur_kernel) - factor) - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
layers.append(
EqualConvTranspose2d(
in_channel,
out_channel,
kernel_size,
padding=0,
stride=2,
bias=bias and not activate
)
)
layers.append(Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor))
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
layers.append(
EqualConv2d(
in_channel,
out_channel,
kernel_size,
padding=0,
stride=2,
bias=bias and not activate
)
)
if (not downsample) and (not upsample):
padding = kernel_size // 2
layers.append(
EqualConv2d(
in_channel,
out_channel,
kernel_size,
padding=padding,
stride=1,
bias=bias and not activate
)
)
if activate:
layers.append(FusedLeakyReLU(out_channel, bias=bias))
super().__init__(*layers)
class ConvResBlock2d(nn.Module):
"""2D convolutional residual block with equalized learning rate.
Residual block composed of 3x3 convolutions and leaky ReLUs.
Args:
----
in_channel: int
Input channels.
out_channel: int
Output channels.
upsample: bool
Apply upsampling via strided convolution in the first conv.
downsample: bool
Apply downsampling via strided convolution in the second conv.
"""
def __init__(self, in_channel, out_channel, upsample=False, downsample=False):
super().__init__()
assert not (upsample and downsample), 'Cannot upsample and downsample simultaneously'
mid_ch = in_channel if downsample else out_channel
self.conv1 = ConvLayer2d(in_channel, mid_ch, upsample=upsample, kernel_size=3)
self.conv2 = ConvLayer2d(mid_ch, out_channel, downsample=downsample, kernel_size=3)
if (in_channel != out_channel) or upsample or downsample:
self.skip = ConvLayer2d(
in_channel,
out_channel,
upsample=upsample,
downsample=downsample,
kernel_size=1,
activate=False,
bias=False,
)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
if hasattr(self, 'skip'):
skip = self.skip(input)
out = (out + skip) / math.sqrt(2)
else:
out = (out + input) / math.sqrt(2)
return out
|