File size: 15,820 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
fb140f6
da48dbe
fb140f6
da48dbe
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.

"""

from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import math
import os
import code
import torch
from torch import nn
from .transformers.bert.modeling_bert import BertPreTrainedModel, BertEmbeddings, BertPooler, BertIntermediate, BertOutput, BertSelfOutput
# import src.modeling.data.config as cfg
# from src.modeling._gcnn import GraphConvolution, GraphResBlock
from .transformers.bert.modeling_utils import prune_linear_layer

LayerNormClass = torch.nn.LayerNorm
BertLayerNorm = torch.nn.LayerNorm
from .transformers.bert import BertConfig


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        if history_state is not None:
            raise
            x_states = torch.cat([history_state, hidden_states], dim=1)
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(x_states)
            mixed_value_layer = self.value(x_states)
        else:
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        # print('mixed_query_layer', mixed_query_layer.shape, mixed_key_layer.shape, mixed_value_layer.shape)
        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        # print('query_layer', query_layer.shape, key_layer.shape, value_layer.shape)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            raise
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, )
        return outputs


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

    def forward(self, input_tensor, attention_mask, head_mask=None, history_state=None):
        self_outputs = self.self(input_tensor, attention_mask, head_mask, history_state)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = (attention_output, ) + self_outputs[1:]    # add attentions if we output them
        return outputs


class AttLayer(nn.Module):
    def __init__(self, config):
        super(AttLayer, self).__init__()
        self.attention = BertAttention(config)

        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def MHA(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask, history_state)
        attention_output = attention_outputs[0]

        # print('attention_output', hidden_states.shape, attention_output.shape)

        intermediate_output = self.intermediate(attention_output)
        # print('intermediate_output', intermediate_output.shape)
        layer_output = self.output(intermediate_output, attention_output)
        # print('layer_output', layer_output.shape)
        outputs = (layer_output, ) + attention_outputs[1:]    # add attentions if we output them
        return outputs

    def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        return self.MHA(hidden_states, attention_mask, head_mask, history_state)


class AttEncoder(nn.Module):
    def __init__(self, config):
        super(AttEncoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = nn.ModuleList([AttLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, attention_mask, head_mask=None, encoder_history_states=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            history_state = None if encoder_history_states is None else encoder_history_states[i]
            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], history_state)
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1], )

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        outputs = (hidden_states, )
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states, )
        if self.output_attentions:
            outputs = outputs + (all_attentions, )

        return outputs    # outputs, (hidden states), (attentions)


class EncoderBlock(BertPreTrainedModel):
    def __init__(self, config):
        super(EncoderBlock, self).__init__(config)
        self.config = config
        # self.embeddings = BertEmbeddings(config)
        self.encoder = AttEncoder(config)
        # self.pooler = BertPooler(config)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.img_dim = config.img_feature_dim

        try:
            self.use_img_layernorm = config.use_img_layernorm
        except:
            self.use_img_layernorm = None

        self.img_embedding = nn.Linear(self.img_dim, self.config.hidden_size, bias=True)
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        if self.use_img_layernorm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.img_layer_norm_eps)

        self.apply(self.init_weights)

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        img_feats,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None
    ):

        batch_size = len(img_feats)
        seq_length = len(img_feats[0])
        input_ids = torch.zeros([batch_size, seq_length], dtype=torch.long).to(img_feats.device)

        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
            # print('-------------------')
            # print('position_ids', seq_length, position_ids.shape)
            #  494 torch.Size([2, 494])

        position_embeddings = self.position_embeddings(position_ids)
        # print('position_embeddings', position_embeddings.shape, self.config.max_position_embeddings, self.config.hidden_size)
        # torch.Size([2, 494, 1024]) 512 1024
        #  torch.Size([2, 494, 256]) 512 256

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        else:
            raise

        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        else:
            raise

        if attention_mask.dim() == 2:
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        elif attention_mask.dim() == 3:
            extended_attention_mask = attention_mask.unsqueeze(1)
        else:
            raise NotImplementedError

        # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = extended_attention_mask.to(
            dtype=img_feats.dtype
        )    # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        if head_mask is not None:
            raise
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
                    -1
                )    # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )    # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        # Project input token features to have spcified hidden size
        # print('img_feats', img_feats.shape)   # torch.Size([2, 494, 2051])
        img_embedding_output = self.img_embedding(img_feats)
        # print('img_embedding_output', img_embedding_output.shape)   # torch.Size([2, 494, 1024])

        # We empirically observe that adding an additional learnable position embedding leads to more stable training
        embeddings = position_embeddings + img_embedding_output

        if self.use_img_layernorm:
            embeddings = self.LayerNorm(embeddings)
        # embeddings = self.dropout(embeddings)

        # print('extended_attention_mask', extended_attention_mask.shape)  # torch.Size([2, 1, 1, 494])
        encoder_outputs = self.encoder(embeddings, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]

        outputs = (sequence_output, )
        if self.config.output_hidden_states:
            all_hidden_states = encoder_outputs[1]
            outputs = outputs + (all_hidden_states, )
        if self.config.output_attentions:
            all_attentions = encoder_outputs[-1]
            outputs = outputs + (all_attentions, )

        return outputs


def get_att_block(
    img_feature_dim=2048,
    output_feat_dim=512,
    hidden_feat_dim=1024,
    num_attention_heads=4,
    num_hidden_layers=1
):

    config_class = BertConfig
    config = config_class.from_pretrained('lib/pymafx/models/transformers/bert/bert-base-uncased/')

    interm_size_scale = 2

    config.output_attentions = False
    # config.hidden_dropout_prob = args.drop_out
    config.img_feature_dim = img_feature_dim
    # config.output_feature_dim = output_feat_dim
    config.hidden_size = hidden_feat_dim
    config.intermediate_size = int(config.hidden_size * interm_size_scale)
    config.num_hidden_layers = num_hidden_layers
    config.num_attention_heads = num_attention_heads
    config.max_position_embeddings = 900

    # init a transformer encoder and append it to a list
    assert config.hidden_size % config.num_attention_heads == 0

    att_model = EncoderBlock(config=config)

    return att_model


class Graphormer(BertPreTrainedModel):
    '''
    The archtecture of a transformer encoder block we used in Graphormer
    '''
    def __init__(self, config):
        super(Graphormer, self).__init__(config)
        self.config = config
        self.bert = EncoderBlock(config)
        self.cls_head = nn.Linear(config.hidden_size, self.config.output_feature_dim)
        self.residual = nn.Linear(config.img_feature_dim, self.config.output_feature_dim)
        self.apply(self.init_weights)

    def forward(
        self,
        img_feats,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
        masked_lm_labels=None,
        next_sentence_label=None,
        position_ids=None,
        head_mask=None
    ):
        '''
        # self.bert has three outputs
        # predictions[0]: output tokens
        # predictions[1]: all_hidden_states, if enable "self.config.output_hidden_states"
        # predictions[2]: attentions, if enable "self.config.output_attentions"
        '''
        predictions = self.bert(
            img_feats=img_feats,
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            head_mask=head_mask
        )

        # We use "self.cls_head" to perform dimensionality reduction. We don't use it for classification.
        pred_score = self.cls_head(predictions[0])
        res_img_feats = self.residual(img_feats)
        pred_score = pred_score + res_img_feats
        # print('pred_score', pred_score.shape)

        if self.config.output_attentions and self.config.output_hidden_states:
            return pred_score, predictions[1], predictions[-1]
        else:
            return pred_score