Spaces:
Runtime error
Runtime error
File size: 7,323 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import torch.nn as nn
import torch
import math
import torch.nn.functional as F
class single_conv(nn.Module):
def __init__(self, in_ch, out_ch):
super(single_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.conv(x)
class double_conv(nn.Module):
def __init__(self, in_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1),
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class double_conv_down(nn.Module):
def __init__(self, in_ch, out_ch):
super(double_conv_down, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, stride=2, padding=1), nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1),
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class double_conv_up(nn.Module):
def __init__(self, in_ch, out_ch):
super(double_conv_up, self).__init__()
self.conv = nn.Sequential(
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1),
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class PosEnSine(nn.Module):
"""
Code borrowed from DETR: models/positional_encoding.py
output size: b*(2.num_pos_feats)*h*w
"""
def __init__(self, num_pos_feats):
super(PosEnSine, self).__init__()
self.num_pos_feats = num_pos_feats
self.normalize = True
self.scale = 2 * math.pi
self.temperature = 10000
def forward(self, x, pt_coord=None):
b, c, h, w = x.shape
if pt_coord is not None:
z_embed = pt_coord[:, :, 2].unsqueeze(-1) + 1.
y_embed = pt_coord[:, :, 1].unsqueeze(-1) + 1.
x_embed = pt_coord[:, :, 0].unsqueeze(-1) + 1.
else:
not_mask = torch.ones(1, h, w, device=x.device)
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
z_embed = torch.ones_like(x_embed)
if self.normalize:
eps = 1e-6
z_embed = z_embed / (torch.max(z_embed) + eps) * self.scale
y_embed = y_embed / (torch.max(y_embed) + eps) * self.scale
x_embed = x_embed / (torch.max(x_embed) + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_z = z_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_z = torch.stack((pos_z[:, :, :, 0::2].sin(), pos_z[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos = torch.cat((pos_x, pos_y, pos_z), dim=3).permute(0, 3, 1, 2)
# if pt_coord is None:
pos = pos.repeat(b, 1, 1, 1)
return pos
def softmax_attention(q, k, v):
# b x n x d x h x w
h, w = q.shape[-2], q.shape[-1]
q = q.flatten(-2).transpose(-2, -1) # b x n x hw x d
k = k.flatten(-2) # b x n x d x hw
v = v.flatten(-2).transpose(-2, -1)
print('softmax', q.shape, k.shape, v.shape)
N = k.shape[-1] # ?????? maybe change to k.shape[-2]????
attn = torch.matmul(q / N**0.5, k)
attn = F.softmax(attn, dim=-1)
output = torch.matmul(attn, v)
output = output.transpose(-2, -1)
output = output.view(*output.shape[:-1], h, w)
return output, attn
def dotproduct_attention(q, k, v):
# b x n x d x h x w
h, w = q.shape[-2], q.shape[-1]
q = q.flatten(-2).transpose(-2, -1) # b x n x hw x d
k = k.flatten(-2) # b x n x d x hw
v = v.flatten(-2).transpose(-2, -1)
N = k.shape[-1]
attn = None
tmp = torch.matmul(k, v) / N
output = torch.matmul(q, tmp)
output = output.transpose(-2, -1)
output = output.view(*output.shape[:-1], h, w)
return output, attn
def long_range_attention(q, k, v, P_h, P_w): # fixed patch size
B, N, C, qH, qW = q.size()
_, _, _, kH, kW = k.size()
qQ_h, qQ_w = qH // P_h, qW // P_w
kQ_h, kQ_w = kH // P_h, kW // P_w
q = q.reshape(B, N, C, qQ_h, P_h, qQ_w, P_w)
k = k.reshape(B, N, C, kQ_h, P_h, kQ_w, P_w)
v = v.reshape(B, N, -1, kQ_h, P_h, kQ_w, P_w)
q = q.permute(0, 1, 4, 6, 2, 3, 5) # [b, n, Ph, Pw, d, Qh, Qw]
k = k.permute(0, 1, 4, 6, 2, 3, 5)
v = v.permute(0, 1, 4, 6, 2, 3, 5)
output, attn = softmax_attention(q, k, v) # attn: [b, n, Ph, Pw, qQh*qQw, kQ_h*kQ_w]
output = output.permute(0, 1, 4, 5, 2, 6, 3)
output = output.reshape(B, N, -1, qH, qW)
return output, attn
def short_range_attention(q, k, v, Q_h, Q_w): # fixed patch number
B, N, C, qH, qW = q.size()
_, _, _, kH, kW = k.size()
qP_h, qP_w = qH // Q_h, qW // Q_w
kP_h, kP_w = kH // Q_h, kW // Q_w
q = q.reshape(B, N, C, Q_h, qP_h, Q_w, qP_w)
k = k.reshape(B, N, C, Q_h, kP_h, Q_w, kP_w)
v = v.reshape(B, N, -1, Q_h, kP_h, Q_w, kP_w)
q = q.permute(0, 1, 3, 5, 2, 4, 6) # [b, n, Qh, Qw, d, Ph, Pw]
k = k.permute(0, 1, 3, 5, 2, 4, 6)
v = v.permute(0, 1, 3, 5, 2, 4, 6)
output, attn = softmax_attention(q, k, v) # attn: [b, n, Qh, Qw, qPh*qPw, kPh*kPw]
output = output.permute(0, 1, 4, 2, 5, 3, 6)
output = output.reshape(B, N, -1, qH, qW)
return output, attn
def space_to_depth(x, block_size):
x_shape = x.shape
c, h, w = x_shape[-3:]
if len(x.shape) >= 5:
x = x.view(-1, c, h, w)
unfolded_x = torch.nn.functional.unfold(x, block_size, stride=block_size)
return unfolded_x.view(*x_shape[0:-3], c * block_size**2, h // block_size, w // block_size)
def depth_to_space(x, block_size):
x_shape = x.shape
c, h, w = x_shape[-3:]
x = x.view(-1, c, h, w)
y = torch.nn.functional.pixel_shuffle(x, block_size)
return y.view(*x_shape[0:-3], -1, h * block_size, w * block_size)
def patch_attention(q, k, v, P):
# q: [b, nhead, c, h, w]
q_patch = space_to_depth(q, P) # [b, nhead, cP^2, h/P, w/P]
k_patch = space_to_depth(k, P)
v_patch = space_to_depth(v, P)
# output: [b, nhead, cP^2, h/P, w/P]
# attn: [b, nhead, h/P*w/P, h/P*w/P]
output, attn = softmax_attention(q_patch, k_patch, v_patch)
output = depth_to_space(output, P) # output: [b, nhead, c, h, w]
return output, attn
|