File size: 24,903 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
fb140f6
 
da48dbe
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
fb140f6
 
da48dbe
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
fb140f6
 
da48dbe
 
fb140f6
 
da48dbe
 
fb140f6
 
da48dbe
 
fb140f6
 
 
 
 
da48dbe
 
 
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
fb140f6
 
da48dbe
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# Written by Roy Tseng
#
# Based on:
# --------------------------------------------------------
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import cv2
import numpy as np
import os
import pycocotools.mask as mask_util
import math
import torchvision

from .colormap import colormap
from .keypoints import get_keypoints
from .imutils import normalize_2d_kp

# Use a non-interactive backend
import matplotlib

matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from mpl_toolkits.mplot3d import Axes3D
from skimage.transform import resize

plt.rcParams['pdf.fonttype'] = 42    # For editing in Adobe Illustrator

_GRAY = (218, 227, 218)
_GREEN = (18, 127, 15)
_WHITE = (255, 255, 255)


def get_colors():
    colors = {
        'pink': np.array([197, 27, 125]),    # L lower leg
        'light_pink': np.array([233, 163, 201]),    # L upper leg
        'light_green': np.array([161, 215, 106]),    # L lower arm
        'green': np.array([77, 146, 33]),    # L upper arm
        'red': np.array([215, 48, 39]),    # head
        'light_red': np.array([252, 146, 114]),    # head
        'light_orange': np.array([252, 141, 89]),    # chest
        'purple': np.array([118, 42, 131]),    # R lower leg
        'light_purple': np.array([175, 141, 195]),    # R upper
        'light_blue': np.array([145, 191, 219]),    # R lower arm
        'blue': np.array([69, 117, 180]),    # R upper arm
        'gray': np.array([130, 130, 130]),    #
        'white': np.array([255, 255, 255]),    #
    }
    return colors


def kp_connections(keypoints):
    kp_lines = [
        [keypoints.index('left_eye'), keypoints.index('right_eye')],
        [keypoints.index('left_eye'), keypoints.index('nose')],
        [keypoints.index('right_eye'), keypoints.index('nose')],
        [keypoints.index('right_eye'), keypoints.index('right_ear')],
        [keypoints.index('left_eye'), keypoints.index('left_ear')],
        [keypoints.index('right_shoulder'),
         keypoints.index('right_elbow')],
        [keypoints.index('right_elbow'),
         keypoints.index('right_wrist')],
        [keypoints.index('left_shoulder'),
         keypoints.index('left_elbow')],
        [keypoints.index('left_elbow'),
         keypoints.index('left_wrist')],
        [keypoints.index('right_hip'), keypoints.index('right_knee')],
        [keypoints.index('right_knee'),
         keypoints.index('right_ankle')],
        [keypoints.index('left_hip'), keypoints.index('left_knee')],
        [keypoints.index('left_knee'), keypoints.index('left_ankle')],
        [keypoints.index('right_shoulder'),
         keypoints.index('left_shoulder')],
        [keypoints.index('right_hip'), keypoints.index('left_hip')],
    ]
    return kp_lines


def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps):
    """Convert from the class boxes/segms/keyps format generated by the testing
    code.
    """
    box_list = [b for b in cls_boxes if len(b) > 0]
    if len(box_list) > 0:
        boxes = np.concatenate(box_list)
    else:
        boxes = None
    if cls_segms is not None:
        segms = [s for slist in cls_segms for s in slist]
    else:
        segms = None
    if cls_keyps is not None:
        keyps = [k for klist in cls_keyps for k in klist]
    else:
        keyps = None
    classes = []
    for j in range(len(cls_boxes)):
        classes += [j] * len(cls_boxes[j])
    return boxes, segms, keyps, classes


def vis_bbox_opencv(img, bbox, thick=1):
    """Visualizes a bounding box."""
    (x0, y0, w, h) = bbox
    x1, y1 = int(x0 + w), int(y0 + h)
    x0, y0 = int(x0), int(y0)
    cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick)
    return img


def get_class_string(class_index, score, dataset):
    class_text = dataset.classes[class_index] if dataset is not None else \
        'id{:d}'.format(class_index)
    return class_text + ' {:0.2f}'.format(score).lstrip('0')


def vis_one_image(
    im,
    im_name,
    output_dir,
    boxes,
    segms=None,
    keypoints=None,
    body_uv=None,
    thresh=0.9,
    kp_thresh=2,
    dpi=200,
    box_alpha=0.0,
    dataset=None,
    show_class=False,
    ext='pdf'
):
    """Visual debugging of detections."""
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    if isinstance(boxes, list):
        boxes, segms, keypoints, classes = convert_from_cls_format(boxes, segms, keypoints)

    if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh:
        return

    if segms is not None:
        masks = mask_util.decode(segms)

    color_list = colormap(rgb=True) / 255

    dataset_keypoints, _ = get_keypoints()

    kp_lines = kp_connections(dataset_keypoints)
    cmap = plt.get_cmap('rainbow')
    colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]

    fig = plt.figure(frameon=False)
    fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi)
    ax = plt.Axes(fig, [0., 0., 1., 1.])
    ax.axis('off')
    fig.add_axes(ax)
    ax.imshow(im)

    # Display in largest to smallest order to reduce occlusion
    areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
    sorted_inds = np.argsort(-areas)

    mask_color_id = 0
    for i in sorted_inds:
        bbox = boxes[i, :4]
        score = boxes[i, -1]
        if score < thresh:
            continue

        print(dataset.classes[classes[i]], score)
        # show box (off by default, box_alpha=0.0)
        ax.add_patch(
            plt.Rectangle(
                (bbox[0], bbox[1]),
                bbox[2] - bbox[0],
                bbox[3] - bbox[1],
                fill=False,
                edgecolor='g',
                linewidth=0.5,
                alpha=box_alpha
            )
        )

        if show_class:
            ax.text(
                bbox[0],
                bbox[1] - 2,
                get_class_string(classes[i], score, dataset),
                fontsize=3,
                family='serif',
                bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'),
                color='white'
            )

        # show mask
        if segms is not None and len(segms) > i:
            img = np.ones(im.shape)
            color_mask = color_list[mask_color_id % len(color_list), 0:3]
            mask_color_id += 1

            w_ratio = .4
            for c in range(3):
                color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio
            for c in range(3):
                img[:, :, c] = color_mask[c]
            e = masks[:, :, i]

            _, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)

            for c in contour:
                polygon = Polygon(
                    c.reshape((-1, 2)),
                    fill=True,
                    facecolor=color_mask,
                    edgecolor='w',
                    linewidth=1.2,
                    alpha=0.5
                )
                ax.add_patch(polygon)

        # show keypoints
        if keypoints is not None and len(keypoints) > i:
            kps = keypoints[i]
            plt.autoscale(False)
            for l in range(len(kp_lines)):
                i1 = kp_lines[l][0]
                i2 = kp_lines[l][1]
                if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
                    x = [kps[0, i1], kps[0, i2]]
                    y = [kps[1, i1], kps[1, i2]]
                    line = ax.plot(x, y)
                    plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7)
                if kps[2, i1] > kp_thresh:
                    ax.plot(kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7)
                if kps[2, i2] > kp_thresh:
                    ax.plot(kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7)

            # add mid shoulder / mid hip for better visualization
            mid_shoulder = (
                kps[:2, dataset_keypoints.index('right_shoulder')] +
                kps[:2, dataset_keypoints.index('left_shoulder')]
            ) / 2.0
            sc_mid_shoulder = np.minimum(
                kps[2, dataset_keypoints.index('right_shoulder')],
                kps[2, dataset_keypoints.index('left_shoulder')]
            )
            mid_hip = (
                kps[:2, dataset_keypoints.index('right_hip')] +
                kps[:2, dataset_keypoints.index('left_hip')]
            ) / 2.0
            sc_mid_hip = np.minimum(
                kps[2, dataset_keypoints.index('right_hip')],
                kps[2, dataset_keypoints.index('left_hip')]
            )
            if (
                sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh
            ):
                x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]]
                y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]]
                line = ax.plot(x, y)
                plt.setp(line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7)
            if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
                x = [mid_shoulder[0], mid_hip[0]]
                y = [mid_shoulder[1], mid_hip[1]]
                line = ax.plot(x, y)
                plt.setp(line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7)

    #   DensePose Visualization Starts!!
    ##  Get full IUV image out
    if body_uv is not None and len(body_uv) > 1:
        IUV_fields = body_uv[1]
        #
        All_Coords = np.zeros(im.shape)
        All_inds = np.zeros([im.shape[0], im.shape[1]])
        K = 26
        ##
        inds = np.argsort(boxes[:, 4])
        ##
        for i, ind in enumerate(inds):
            entry = boxes[ind, :]
            if entry[4] > 0.65:
                entry = entry[0:4].astype(int)
                ####
                output = IUV_fields[ind]
                ####
                All_Coords_Old = All_Coords[entry[1]:entry[1] + output.shape[1],
                                            entry[0]:entry[0] + output.shape[2], :]
                All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
                                                                        0])[All_Coords_Old == 0]
                All_Coords[entry[1]:entry[1] + output.shape[1],
                           entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old
                ###
                CurrentMask = (output[0, :, :] > 0).astype(np.float32)
                All_inds_old = All_inds[entry[1]:entry[1] + output.shape[1],
                                        entry[0]:entry[0] + output.shape[2]]
                All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
                All_inds[entry[1]:entry[1] + output.shape[1],
                         entry[0]:entry[0] + output.shape[2]] = All_inds_old
        #
        All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3]
        All_Coords[All_Coords > 255] = 255.
        All_Coords = All_Coords.astype(np.uint8)
        All_inds = All_inds.astype(np.uint8)
        #
        IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png'
        INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
        cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords)
        cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
        print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName)))
        ###
        ### DensePose Visualization Done!!
    #
    output_name = os.path.basename(im_name) + '.' + ext
    fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
    plt.close('all')

    #   SMPL Visualization
    if body_uv is not None and len(body_uv) > 2:
        smpl_fields = body_uv[2]
        #
        All_Coords = np.zeros(im.shape)
        # All_inds = np.zeros([im.shape[0], im.shape[1]])
        K = 26
        ##
        inds = np.argsort(boxes[:, 4])
        ##
        for i, ind in enumerate(inds):
            entry = boxes[ind, :]
            if entry[4] > 0.75:
                entry = entry[0:4].astype(int)
                center_roi = [(entry[2] + entry[0]) / 2., (entry[3] + entry[1]) / 2.]
                ####
                output, center_out = smpl_fields[ind]
                ####
                x1_img = max(int(center_roi[0] - center_out[0]), 0)
                y1_img = max(int(center_roi[1] - center_out[1]), 0)

                x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1])
                y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0])

                All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :]

                x1_out = max(int(center_out[0] - center_roi[0]), 0)
                y1_out = max(int(center_out[1] - center_roi[1]), 0)

                x2_out = x1_out + (x2_img - x1_img)
                y2_out = y1_out + (y2_img - y1_img)

                output = output[:, y1_out:y2_out, x1_out:x2_out]

                # All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2],
                #                  :]
                All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
                                                                        0])[All_Coords_Old == 0]
                All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old
                ###
                # CurrentMask = (output[0, :, :] > 0).astype(np.float32)
                # All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]]
                # All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
                # All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old
        #
        All_Coords = 255. * All_Coords
        All_Coords[All_Coords > 255] = 255.
        All_Coords = All_Coords.astype(np.uint8)

        image_stacked = im[:, :, ::-1]
        image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20]
        # All_inds = All_inds.astype(np.uint8)
        #
        SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png'
        smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png'
        # INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
        cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords)
        cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked)
        # cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
        print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName)))
        ###
        ### SMPL Visualization Done!!
    #
    output_name = os.path.basename(im_name) + '.' + ext
    fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
    plt.close('all')


def vis_batch_image_with_joints(
    batch_image,
    batch_joints,
    batch_joints_vis,
    file_name=None,
    nrow=8,
    padding=0,
    pad_value=1,
    add_text=True
):
    '''
    batch_image: [batch_size, channel, height, width]
    batch_joints: [batch_size, num_joints, 3],
    batch_joints_vis: [batch_size, num_joints, 1],
    }
    '''
    grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value)
    ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
    ndarr = ndarr.copy()

    nmaps = batch_image.size(0)
    xmaps = min(nrow, nmaps)
    ymaps = int(math.ceil(float(nmaps) / xmaps))
    height = int(batch_image.size(2) + padding)
    width = int(batch_image.size(3) + padding)
    k = 0
    for y in range(ymaps):
        for x in range(xmaps):
            if k >= nmaps:
                break

            joints = batch_joints[k]
            joints_vis = batch_joints_vis[k]

            flip = 1
            count = -1

            for joint, joint_vis in zip(joints, joints_vis):
                joint[0] = x * width + padding + joint[0]
                joint[1] = y * height + padding + joint[1]
                flip *= -1
                count += 1
                if joint_vis[0]:
                    try:
                        if flip > 0:
                            cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1)
                        else:
                            cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1)
                        if add_text:
                            cv2.putText(
                                ndarr, str(count), (int(joint[0]), int(joint[1])),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1
                            )
                    except Exception as e:
                        print(e)
            k = k + 1

    return ndarr


def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None):
    n_sample = joints.shape[0]
    max_show = 2
    if n_sample > max_show:
        if batch_img is not None:
            batch_img = batch_img[:max_show]
        joints = joints[:max_show]
        n_sample = max_show

    color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']

    # color = ['g', 'b', 'r']

    def m_l_r(idx):

        if joint_group is None:
            return 1

        for i in range(len(joint_group)):
            if idx in joint_group[i]:
                return i

    for i in range(n_sample):
        if batch_img is not None:
            # ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
            ax_img = plt.subplot(2, n_sample, i + 1)
            img_np = batch_img[i].cpu().numpy()
            img_np = np.transpose(img_np, (1, 2, 0))    # H*W*C
            ax_img.imshow(img_np)
            ax_img.set_axis_off()
            ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d')

        else:
            ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d')

        plot_kps = joints[i]
        if plot_kps.shape[1] > 2:
            if joint_group is None:
                ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
                ax_pred.scatter(
                    plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.'
                )
            else:
                for j in range(len(joint_group)):
                    ax_pred.scatter(
                        plot_kps[joint_group[j], 2],
                        plot_kps[joint_group[j], 0],
                        plot_kps[joint_group[j], 1],
                        s=30,
                        c=color[j],
                        marker='s'
                    )

            if pairs is not None:
                for p in pairs:
                    ax_pred.plot(
                        plot_kps[p, 2],
                        plot_kps[p, 0],
                        plot_kps[p, 1],
                        c=color[m_l_r(p[1])],
                        linewidth=2
                    )

        # ax_pred.set_axis_off()

        ax_pred.set_aspect('equal')
        set_axes_equal(ax_pred)

        ax_pred.xaxis.set_ticks([])
        ax_pred.yaxis.set_ticks([])
        ax_pred.zaxis.set_ticks([])


def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None):
    n_sample = joints.shape[0]
    max_show = 2
    if n_sample > max_show:
        if batch_img is not None:
            batch_img = batch_img[:max_show]
        joints = joints[:max_show]
        n_sample = max_show

    color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']

    # color = ['g', 'b', 'r']

    def m_l_r(idx):

        if joint_group is None:
            return 1

        for i in range(len(joint_group)):
            if idx in joint_group[i]:
                return i

    for i in range(n_sample):
        if batch_img is not None:
            # ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
            ax_img = plt.subplot(2, n_sample, i + 1)
            img_np = batch_img[i].cpu().numpy()
            img_np = np.transpose(img_np, (1, 2, 0))    # H*W*C
            ax_img.imshow(img_np)
            ax_img.set_axis_off()
            ax_pred = plt.subplot(2, n_sample, n_sample + i + 1)

        else:
            ax_pred = plt.subplot(1, n_sample, i + 1)

        plot_kps = joints[i]
        if plot_kps.shape[1] > 1:
            if joint_group is None:
                ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.')
                # ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
                # ax_pred.scatter(plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.')
            else:
                for j in range(len(joint_group)):
                    ax_pred.scatter(
                        plot_kps[joint_group[j], 0],
                        plot_kps[joint_group[j], 1],
                        s=100,
                        c=color[j],
                        marker='o'
                    )

            if pairs is not None:
                for p in pairs:
                    ax_pred.plot(
                        plot_kps[p, 0],
                        plot_kps[p, 1],
                        c=color[m_l_r(p[1])],
                        linestyle=':',
                        linewidth=3
                    )

        ax_pred.set_axis_off()

        ax_pred.set_aspect('equal')
        ax_pred.axis('equal')
        # set_axes_equal(ax_pred)

        ax_pred.xaxis.set_ticks([])
        ax_pred.yaxis.set_ticks([])
        # ax_pred.zaxis.set_ticks([])


def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2):

    if unnormalize:
        kp_2d[:, :2] = normalize_2d_kp(kp_2d[:, :2], 224, inv=True)

    kp_2d[:, 2] = kp_2d[:, 2] > 0.3
    kp_2d = np.array(kp_2d, dtype=int)

    rcolor = get_colors()['red'].tolist()
    pcolor = get_colors()['green'].tolist()
    lcolor = get_colors()['blue'].tolist()

    common_lr = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]
    for idx, pt in enumerate(kp_2d):
        if pt[2] > 0:    # if visible
            if idx % 2 == 0:
                color = rcolor
            else:
                color = pcolor
            cv2.circle(image, (pt[0], pt[1]), 4, color, -1)
            # cv2.putText(image, f'{idx}', (pt[0]+1, pt[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0))

    if dataset == 'common' and len(kp_2d) != 15:
        return image

    skeleton = eval(f'kp_utils.get_{dataset}_skeleton')()
    for i, (j1, j2) in enumerate(skeleton):
        if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0:    # if visible
            if dataset == 'common':
                color = rcolor if common_lr[i] == 0 else lcolor
            else:
                color = lcolor if i % 2 == 0 else rcolor
            pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1])
            cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness)

    return image


# https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to
def set_axes_equal(ax):
    '''Make axes of 3D plot have equal scale so that spheres appear as spheres,
    cubes as cubes, etc..  This is one possible solution to Matplotlib's
    ax.set_aspect('equal') and ax.axis('equal') not working for 3D.

    Input
      ax: a matplotlib axis, e.g., as output from plt.gca().
    '''

    x_limits = ax.get_xlim3d()
    y_limits = ax.get_ylim3d()
    z_limits = ax.get_zlim3d()

    x_range = abs(x_limits[1] - x_limits[0])
    x_middle = np.mean(x_limits)
    y_range = abs(y_limits[1] - y_limits[0])
    y_middle = np.mean(y_limits)
    z_range = abs(z_limits[1] - z_limits[0])
    z_middle = np.mean(z_limits)

    # The plot bounding box is a sphere in the sense of the infinity
    # norm, hence I call half the max range the plot radius.
    plot_radius = 0.5 * max([x_range, y_range, z_range])

    ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
    ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
    ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])