Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import os.path as osp | |
import numpy as np | |
import torch | |
import trimesh | |
from pytorch3d.ops import SubdivideMeshes | |
from pytorch3d.structures import Meshes | |
from scipy.spatial import cKDTree | |
import lib.smplx as smplx | |
from lib.common.local_affine import register | |
from lib.dataset.mesh_util import ( | |
SMPLX, | |
export_obj, | |
keep_largest, | |
o3d_ransac, | |
poisson, | |
remesh_laplacian, | |
) | |
from lib.smplx.lbs import general_lbs | |
# loading cfg file | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-n", "--name", type=str, default="") | |
parser.add_argument("-g", "--gpu", type=int, default=0) | |
args = parser.parse_args() | |
smplx_container = SMPLX() | |
device = torch.device(f"cuda:{args.gpu}") | |
# loading SMPL-X and econ objs inferred with ECON | |
prefix = f"./results/econ/obj/{args.name}" | |
smpl_path = f"{prefix}_smpl_00.npy" | |
smplx_param = np.load(smpl_path, allow_pickle=True).item() | |
# export econ obj with pre-computed normals | |
econ_path = f"{prefix}_0_full.obj" | |
econ_obj = trimesh.load(econ_path) | |
assert (econ_obj.vertex_normals.shape[1] == 3) | |
econ_obj.export(f"{prefix}_econ_raw.ply") | |
# align econ with SMPL-X | |
econ_obj.vertices *= np.array([1.0, -1.0, -1.0]) | |
econ_obj.vertices /= smplx_param["scale"].cpu().numpy() | |
econ_obj.vertices -= smplx_param["transl"].cpu().numpy() | |
for key in smplx_param.keys(): | |
smplx_param[key] = smplx_param[key].cpu().view(1, -1) | |
smpl_model = smplx.create( | |
smplx_container.model_dir, | |
model_type="smplx", | |
gender="neutral", | |
age="adult", | |
use_face_contour=False, | |
use_pca=False, | |
num_betas=200, | |
num_expression_coeffs=50, | |
ext='pkl' | |
) | |
smpl_out_lst = [] | |
# obtain the pose params of T-pose, DA-pose, and the original pose | |
for pose_type in ["t-pose", "da-pose", "pose"]: | |
smpl_out_lst.append( | |
smpl_model( | |
body_pose=smplx_param["body_pose"], | |
global_orient=smplx_param["global_orient"], | |
betas=smplx_param["betas"], | |
expression=smplx_param["expression"], | |
jaw_pose=smplx_param["jaw_pose"], | |
left_hand_pose=smplx_param["left_hand_pose"], | |
right_hand_pose=smplx_param["right_hand_pose"], | |
return_verts=True, | |
return_full_pose=True, | |
return_joint_transformation=True, | |
return_vertex_transformation=True, | |
pose_type=pose_type | |
) | |
) | |
# -------------------------- align econ and SMPL-X in DA-pose space ------------------------- # | |
# 1. find the vertex-correspondence between SMPL-X and econ | |
# 2. ECON + SMPL-X: posed space --> T-pose space --> DA-pose space | |
# 3. ECON (w/o hands & over-streched faces) + SMPL-X (w/ hands & registered inpainting parts) | |
# ------------------------------------------------------------------------------------------- # | |
smpl_verts = smpl_out_lst[2].vertices.detach()[0] | |
smpl_tree = cKDTree(smpl_verts.cpu().numpy()) | |
dist, idx = smpl_tree.query(econ_obj.vertices, k=5) | |
if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.obj"): | |
# t-pose for ECON | |
econ_verts = torch.tensor(econ_obj.vertices).float() | |
rot_mat_t = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]] | |
homo_coord = torch.ones_like(econ_verts)[..., :1] | |
econ_cano_verts = torch.inverse(rot_mat_t) @ torch.cat([econ_verts, homo_coord], | |
dim=1).unsqueeze(-1) | |
econ_cano_verts = econ_cano_verts[:, :3, 0].cpu() | |
econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces) | |
# da-pose for ECON | |
rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]] | |
econ_da_verts = rot_mat_da @ torch.cat([econ_cano_verts, homo_coord], dim=1).unsqueeze(-1) | |
econ_da = trimesh.Trimesh(econ_da_verts[:, :3, 0].cpu(), econ_obj.faces) | |
# da-pose for SMPL-X | |
smpl_da = trimesh.Trimesh( | |
smpl_out_lst[1].vertices.detach()[0], smpl_model.faces, maintain_orders=True, process=False | |
) | |
smpl_da.export(f"{prefix}_smpl_da.obj") | |
# remove hands from ECON for next registeration | |
econ_da_body = econ_da.copy() | |
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) | |
econ_da_body.update_faces(mano_mask[econ_da.faces].all(axis=1)) | |
econ_da_body.remove_unreferenced_vertices() | |
econ_da_body = keep_largest(econ_da_body) | |
# remove SMPL-X hand and face | |
register_mask = ~np.isin( | |
np.arange(smpl_da.vertices.shape[0]), | |
np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid]) | |
) | |
register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy() | |
smpl_da_body = smpl_da.copy() | |
smpl_da_body.update_faces(register_mask[smpl_da.faces].all(axis=1)) | |
smpl_da_body.remove_unreferenced_vertices() | |
smpl_da_body = keep_largest(smpl_da_body) | |
# upsample the smpl_da_body and do registeration | |
smpl_da_body = Meshes( | |
verts=[torch.tensor(smpl_da_body.vertices).float()], | |
faces=[torch.tensor(smpl_da_body.faces).long()], | |
).to(device) | |
sm = SubdivideMeshes(smpl_da_body) | |
smpl_da_body = register(econ_da_body, sm(smpl_da_body), device) | |
# remove over-streched+hand faces from ECON | |
econ_da_body = econ_da.copy() | |
edge_before = np.sqrt( | |
((econ_obj.vertices[econ_cano.edges[:, 0]] - | |
econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) | |
) | |
edge_after = np.sqrt( | |
((econ_da.vertices[econ_cano.edges[:, 0]] - | |
econ_da.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) | |
) | |
edge_diff = edge_after / edge_before.clip(1e-2) | |
streched_mask = np.unique(econ_cano.edges[edge_diff > 6]) | |
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) | |
mano_mask[streched_mask] = False | |
econ_da_body.update_faces(mano_mask[econ_cano.faces].all(axis=1)) | |
econ_da_body.remove_unreferenced_vertices() | |
# stitch the registered SMPL-X body and floating hands to ECON | |
econ_da_tree = cKDTree(econ_da.vertices) | |
dist, idx = econ_da_tree.query(smpl_da_body.vertices, k=1) | |
smpl_da_body.update_faces((dist > 0.02)[smpl_da_body.faces].all(axis=1)) | |
smpl_da_body.remove_unreferenced_vertices() | |
smpl_hand = smpl_da.copy() | |
smpl_hand.update_faces( | |
smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1) | |
) | |
smpl_hand.remove_unreferenced_vertices() | |
econ_da = sum([smpl_hand, smpl_da_body, econ_da_body]) | |
econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, face_count=50000) | |
econ_da = remesh_laplacian(econ_da, f"{prefix}_econ_da.obj") | |
else: | |
econ_da = trimesh.load(f"{prefix}_econ_da.obj") | |
smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False) | |
# ---------------------- SMPL-X compatible ECON ---------------------- # | |
# 1. Find the new vertex-correspondence between NEW ECON and SMPL-X | |
# 2. Build the new J_regressor, lbs_weights, posedirs | |
# 3. canonicalize the NEW ECON | |
# ------------------------------------------------------------------- # | |
print("Start building the SMPL-X compatible ECON model...") | |
smpl_tree = cKDTree(smpl_da.vertices) | |
dist, idx = smpl_tree.query(econ_da.vertices, k=5) | |
knn_weights = np.exp(-dist**2) | |
knn_weights /= knn_weights.sum(axis=1, keepdims=True) | |
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(dim=-1) | |
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(dim=-1).T | |
num_posedirs = smpl_model.posedirs.shape[0] | |
econ_posedirs = ( | |
smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None] | |
).sum(dim=-2).view(num_posedirs, -1).float() | |
econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10) | |
econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True) | |
rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]] | |
econ_da_verts = torch.tensor(econ_da.vertices).float() | |
econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat([ | |
econ_da_verts, torch.ones_like(econ_da_verts)[..., :1] | |
], | |
dim=1).unsqueeze(-1) | |
econ_cano_verts = econ_cano_verts[:, :3, 0].double() | |
# ---------------------------------------------------- | |
# use original pose to animate ECON reconstruction | |
# ---------------------------------------------------- | |
new_pose = smpl_out_lst[2].full_pose | |
# new_pose[:, :3] = 0. | |
posed_econ_verts, _ = general_lbs( | |
pose=new_pose, | |
v_template=econ_cano_verts.unsqueeze(0), | |
posedirs=econ_posedirs, | |
J_regressor=econ_J_regressor, | |
parents=smpl_model.parents, | |
lbs_weights=econ_lbs_weights | |
) | |
aligned_econ_verts = posed_econ_verts[0].detach().cpu().numpy() | |
aligned_econ_verts += smplx_param["transl"].cpu().numpy() | |
aligned_econ_verts *= smplx_param["scale"].cpu().numpy() * np.array([1.0, -1.0, -1.0]) | |
econ_pose = trimesh.Trimesh(aligned_econ_verts, econ_da.faces) | |
assert (econ_pose.vertex_normals.shape[1] == 3) | |
econ_pose.export(f"{prefix}_econ_pose.ply") | |
# ------------------------------------------------------------------------- | |
# Align posed ECON with original ECON, for pixel-aligned texture extraction | |
# ------------------------------------------------------------------------- | |
print("Start ICP registration between posed & original ECON...") | |
import open3d as o3d | |
source = o3d.io.read_point_cloud(f"{prefix}_econ_pose.ply") | |
target = o3d.io.read_point_cloud(f"{prefix}_econ_raw.ply") | |
trans_init = o3d_ransac(source, target) | |
icp_criteria = o3d.pipelines.registration.ICPConvergenceCriteria( | |
relative_fitness=0.000001, relative_rmse=0.000001, max_iteration=100 | |
) | |
reg_p2l = o3d.pipelines.registration.registration_icp( | |
source, | |
target, | |
0.1, | |
trans_init, | |
o3d.pipelines.registration.TransformationEstimationPointToPlane(), | |
criteria=icp_criteria | |
) | |
econ_pose.apply_transform(reg_p2l.transformation) | |
cache_path = f"{prefix.replace('obj','cache')}" | |
os.makedirs(cache_path, exist_ok=True) | |
# ----------------------------------------------------------------- | |
# create UV texture (.obj .mtl .png) from posed ECON reconstruction | |
# ----------------------------------------------------------------- | |
print("Start Color mapping...") | |
from PIL import Image | |
from torchvision import transforms | |
from lib.common.render import query_color | |
from lib.common.render_utils import Pytorch3dRasterizer | |
if not osp.exists(f"{prefix}_econ_icp_rgb.ply"): | |
masked_image = f"./results/econ/png/{args.name}_cloth.png" | |
tensor_image = transforms.ToTensor()(Image.open(masked_image))[:, :, :512] | |
final_colors = query_color( | |
torch.tensor(econ_pose.vertices).float(), | |
torch.tensor(econ_pose.faces).long(), | |
((tensor_image - 0.5) * 2.0).unsqueeze(0).to(device), | |
device=device, | |
paint_normal=False, | |
) | |
final_colors[final_colors == tensor_image[:, 0, 0] * 255.0] = 0.0 | |
final_colors = final_colors.detach().cpu().numpy() | |
econ_pose.visual.vertex_colors = final_colors | |
econ_pose.export(f"{prefix}_econ_icp_rgb.ply") | |
else: | |
mesh = trimesh.load(f"{prefix}_econ_icp_rgb.ply") | |
final_colors = mesh.visual.vertex_colors[:, :3] | |
print("Start UV texture generation...") | |
# Generate UV coords | |
v_np = econ_pose.vertices | |
f_np = econ_pose.faces | |
vt_cache = osp.join(cache_path, "vt.pt") | |
ft_cache = osp.join(cache_path, "ft.pt") | |
if osp.exists(vt_cache) and osp.exists(ft_cache): | |
vt = torch.load(vt_cache).to(device) | |
ft = torch.load(ft_cache).to(device) | |
else: | |
import xatlas | |
atlas = xatlas.Atlas() | |
atlas.add_mesh(v_np, f_np) | |
chart_options = xatlas.ChartOptions() | |
chart_options.max_iterations = 4 | |
atlas.generate(chart_options=chart_options) | |
vmapping, ft_np, vt_np = atlas[0] | |
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device) | |
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device) | |
torch.save(vt.cpu(), vt_cache) | |
torch.save(ft.cpu(), ft_cache) | |
# UV texture rendering | |
uv_rasterizer = Pytorch3dRasterizer(image_size=512, device=device) | |
texture_npy = uv_rasterizer.get_texture( | |
torch.cat([(vt - 0.5) * 2.0, torch.ones_like(vt[:, :1])], dim=1), | |
ft, | |
torch.tensor(v_np).unsqueeze(0).float(), | |
torch.tensor(f_np).unsqueeze(0).long(), | |
torch.tensor(final_colors).unsqueeze(0).float() / 255.0, | |
) | |
Image.fromarray((texture_npy * 255.0).astype(np.uint8)).save(f"{cache_path}/texture.png") | |
# UV mask for TEXTure (https://readpaper.com/paper/4720151447010820097) | |
texture_npy[texture_npy.sum(axis=2) == 0.0] = 1.0 | |
Image.fromarray((texture_npy * 255.0).astype(np.uint8)).save(f"{cache_path}/mask.png") | |
# generate da-pose vertices | |
new_pose = smpl_out_lst[1].full_pose | |
new_pose[:, :3] = 0. | |
posed_econ_verts, _ = general_lbs( | |
pose=new_pose, | |
v_template=econ_cano_verts.unsqueeze(0), | |
posedirs=econ_posedirs, | |
J_regressor=econ_J_regressor, | |
parents=smpl_model.parents, | |
lbs_weights=econ_lbs_weights | |
) | |
# export mtl file | |
mtl_string = f"newmtl mat0 \nKa 1.000000 1.000000 1.000000 \nKd 1.000000 1.000000 1.000000 \nKs 0.000000 0.000000 0.000000 \nTr 1.000000 \nillum 1 \nNs 0.000000\nmap_Kd texture.png" | |
with open(f"{cache_path}/material.mtl", 'w') as file: | |
file.write(mtl_string) | |
export_obj(posed_econ_verts[0].detach().cpu().numpy(), f_np, vt, ft, f"{cache_path}/mesh.obj") | |