ECON / lib /common /imutils.py
Yuliang's picture
remove MeshLab dependency with Open3D
fb140f6
raw
history blame
12.1 kB
import cv2
import mediapipe as mp
import torch
import numpy as np
import torch.nn.functional as F
from PIL import Image
from lib.pymafx.core import constants
from rembg import remove
from rembg.session_factory import new_session
from torchvision import transforms
from kornia.geometry.transform import get_affine_matrix2d, warp_affine
def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
all_ops = []
if res is not None:
all_ops.append(transforms.Resize(size=res))
if not is_tensor:
all_ops.append(transforms.ToTensor())
if mean is not None and std is not None:
all_ops.append(transforms.Normalize(mean=mean, std=std))
return transforms.Compose(all_ops)
def get_affine_matrix_wh(w1, h1, w2, h2):
transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0)
center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0)
scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0)
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.]))
return M
def get_affine_matrix_box(boxes, w2, h2):
# boxes [left, top, right, bottom]
width = boxes[:, 2] - boxes[:, 0] #(N,)
height = boxes[:, 3] - boxes[:, 1] #(N,)
center = torch.tensor(
[(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]
).T #(N,2)
scale = torch.min(torch.tensor([w2 / width, h2 / height]),
dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2)
transl = torch.tensor([w2 / 2.0 - center[:, 0], h2 / 2.0 - center[:, 1]]).unsqueeze(0) #(N,2)
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.]))
return M
def load_img(img_file):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
# considering 16-bit image
if img.dtype == np.uint16:
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2]
def get_keypoints(image):
def collect_xyv(x, body=True):
lmk = x.landmark
all_lmks = []
for i in range(len(lmk)):
visibility = lmk[i].visibility if body else 1.0
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility]))
return torch.stack(all_lmks).view(-1, 4)
mp_holistic = mp.solutions.holistic
with mp_holistic.Holistic(
static_image_mode=True,
model_complexity=2,
) as holistic:
results = holistic.process(image)
fake_kps = torch.zeros(33, 4)
result = {}
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps
result["lhand"] = collect_xyv(
results.left_hand_landmarks, False
) if results.left_hand_landmarks else fake_kps
result["rhand"] = collect_xyv(
results.right_hand_landmarks, False
) if results.right_hand_landmarks else fake_kps
result["face"] = collect_xyv(
results.face_landmarks, False
) if results.face_landmarks else fake_kps
return result
def get_pymafx(image, landmarks):
# image [3,512,512]
item = {
'img_body':
F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]
}
for part in ['lhand', 'rhand', 'face']:
kp2d = landmarks[part]
kp2d_valid = kp2d[kp2d[:, 3] > 0.]
if len(kp2d_valid) > 0:
bbox = [
min(kp2d_valid[:, 0]),
min(kp2d_valid[:, 1]),
max(kp2d_valid[:, 0]),
max(kp2d_valid[:, 1])
]
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.]
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
# handle invalid part keypoints
if len(kp2d_valid) < 1 or scale_part < 0.01:
center_part = [0, 0]
scale_part = 0.5
kp2d[:, 3] = 0
center_part = torch.tensor(center_part).float()
theta_part = torch.zeros(1, 2, 3)
theta_part[:, 0, 0] = scale_part
theta_part[:, 1, 1] = scale_part
theta_part[:, :, -1] = center_part
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False)
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float()
item[f'img_{part}'] = img_part
theta_i_inv = torch.zeros_like(theta_part)
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0]
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1]
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1)
item[f'{part}_theta_inv'] = theta_i_inv[0]
return item
def remove_floats(mask):
# 1. find all the contours
# 2. fillPoly "True" for the largest one
# 3. fillPoly "False" for its childrens
new_mask = np.zeros(mask.shape)
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True)
body_cnt = cnts[cnt_index[0]]
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0]
childs_cnt = [cnts[idx] for idx in childs_cnt_idx]
cv2.fillPoly(new_mask, [body_cnt], 1)
cv2.fillPoly(new_mask, childs_cnt, 0)
return new_mask
def process_image(img_file, hps_type, single, input_res, detector):
img_raw, (in_height, in_width) = load_img(img_file)
tgt_res = input_res * 2
M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res)
img_square = warp_affine(
img_raw,
M_square[:, :2], (tgt_res, ) * 2,
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
# detection for bbox
predictions = detector(img_square / 255.)[0]
if single:
top_score = predictions["scores"][predictions["labels"] == 1].max()
human_ids = torch.where(predictions["scores"] == top_score)[0]
else:
human_ids = torch.logical_and(predictions["labels"] == 1,
predictions["scores"] > 0.9).nonzero().squeeze(1)
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy()
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy()
M_crop = get_affine_matrix_box(boxes, input_res, input_res)
img_icon_lst = []
img_crop_lst = []
img_hps_lst = []
img_mask_lst = []
landmark_lst = []
hands_visibility_lst = []
img_pymafx_lst = []
uncrop_param = {
"ori_shape": [in_height, in_width],
"box_shape": [input_res, input_res],
"square_shape": [tgt_res, tgt_res],
"M_square": M_square,
"M_crop": M_crop
}
for idx in range(len(boxes)):
# mask out the pixels of others
if len(masks) > 1:
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0)
else:
mask_detection = masks[0] * 0.
img_square_rgba = torch.cat(
[img_square.squeeze(0).permute(1, 2, 0),
torch.tensor(mask_detection < 0.4) * 255],
dim=2
)
img_crop = warp_affine(
img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2),
M_crop[idx:idx + 1, :2], (input_res, ) * 2,
mode='bilinear',
padding_mode='zeros',
align_corners=True
).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
# get accurate person segmentation mask
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net"))
img_mask = remove_floats(img_rembg[:, :, [3]])
mean_icon = std_icon = (0.5, 0.5, 0.5)
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8)
img_icon = transform_to_tensor(512, mean_icon, std_icon)(
Image.fromarray(img_np)
) * torch.tensor(img_mask).permute(2, 0, 1)
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN,
constants.IMG_NORM_STD)(Image.fromarray(img_np))
landmarks = get_keypoints(img_np)
# get hands visibility
hands_visibility = [True, True]
if landmarks['lhand'][:, -1].mean() == 0.:
hands_visibility[0] = False
if landmarks['rhand'][:, -1].mean() == 0.:
hands_visibility[1] = False
hands_visibility_lst.append(hands_visibility)
if hps_type == 'pymafx':
img_pymafx_lst.append(
get_pymafx(
transform_to_tensor(512, constants.IMG_NORM_MEAN,
constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks
)
)
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0)
img_icon_lst.append(img_icon)
img_hps_lst.append(img_hps)
img_mask_lst.append(torch.tensor(img_mask[..., 0]))
landmark_lst.append(landmarks['body'])
# required image tensors / arrays
# img_icon (tensor): (-1, 1), [3,512,512]
# img_hps (tensor): (-2.11, 2.44), [3,224,224]
# img_np (array): (0, 255), [512,512,3]
# img_rembg (array): (0, 255), [512,512,4]
# img_mask (array): (0, 1), [512,512,1]
# img_crop (array): (0, 255), [512,512,4]
return_dict = {
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res]
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res]
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res]
"img_raw": img_raw, #[1, 3, H, W]
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res]
"uncrop_param": uncrop_param,
"landmark": torch.stack(landmark_lst), #[N, 33, 4]
"hands_visibility": hands_visibility_lst,
}
img_pymafx = {}
if len(img_pymafx_lst) > 0:
for idx in range(len(img_pymafx_lst)):
for key in img_pymafx_lst[idx].keys():
if key not in img_pymafx.keys():
img_pymafx[key] = [img_pymafx_lst[idx][key]]
else:
img_pymafx[key] += [img_pymafx_lst[idx][key]]
for key in img_pymafx.keys():
img_pymafx[key] = torch.stack(img_pymafx[key]).float()
return_dict.update({"img_pymafx": img_pymafx})
return return_dict
def blend_rgb_norm(norms, data):
# norms [N, 3, res, res]
masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1)
norm_mask = F.interpolate(
torch.cat([norms, masks], dim=1).detach(),
size=data["uncrop_param"]["box_shape"],
mode="bilinear",
align_corners=False
)
final = data["img_raw"].type_as(norm_mask)
for idx in range(len(norms)):
norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0
mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1)
norm_ori = unwrap(norm_pred, data["uncrop_param"], idx)
mask_ori = unwrap(mask_pred, data["uncrop_param"], idx)
final = final * (1.0 - mask_ori) + norm_ori * mask_ori
return final.detach().cpu()
def unwrap(image, uncrop_param, idx):
device = image.device
img_square = warp_affine(
image,
torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device),
uncrop_param["square_shape"],
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
img_ori = warp_affine(
img_square,
torch.inverse(uncrop_param["M_square"])[:, :2].to(device),
uncrop_param["ori_shape"],
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
return img_ori