Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import torch | |
from ..dataset.mesh_util import * | |
from ..net.geometry import orthogonal | |
from termcolor import colored | |
import pytorch_lightning as pl | |
class Format: | |
end = '\033[0m' | |
start = '\033[4m' | |
def init_loss(): | |
losses = { | |
# Cloth: chamfer distance | |
"cloth": { | |
"weight": 1e3, | |
"value": 0.0 | |
}, | |
# Stiffness: [RT]_v1 - [RT]_v2 (v1-edge-v2) | |
"stiff": { | |
"weight": 1e5, | |
"value": 0.0 | |
}, | |
# Cloth: det(R) = 1 | |
"rigid": { | |
"weight": 1e5, | |
"value": 0.0 | |
}, | |
# Cloth: edge length | |
"edge": { | |
"weight": 0, | |
"value": 0.0 | |
}, | |
# Cloth: normal consistency | |
"nc": { | |
"weight": 0, | |
"value": 0.0 | |
}, | |
# Cloth: laplacian smoonth | |
"lapla": { | |
"weight": 1e2, | |
"value": 0.0 | |
}, | |
# Body: Normal_pred - Normal_smpl | |
"normal": { | |
"weight": 1e0, | |
"value": 0.0 | |
}, | |
# Body: Silhouette_pred - Silhouette_smpl | |
"silhouette": { | |
"weight": 1e0, | |
"value": 0.0 | |
}, | |
# Joint: reprojected joints difference | |
"joint": { | |
"weight": 5e0, | |
"value": 0.0 | |
}, | |
} | |
return losses | |
class SubTrainer(pl.Trainer): | |
def save_checkpoint(self, filepath, weights_only=False): | |
"""Save model/training states as a checkpoint file through state-dump and file-write. | |
Args: | |
filepath: write-target file's path | |
weights_only: saving model weights only | |
""" | |
_checkpoint = self._checkpoint_connector.dump_checkpoint(weights_only) | |
del_keys = [] | |
for key in _checkpoint["state_dict"].keys(): | |
for ignore_key in ["normal_filter", "voxelization", "reconEngine"]: | |
if ignore_key in key: | |
del_keys.append(key) | |
for key in del_keys: | |
del _checkpoint["state_dict"][key] | |
pl.utilities.cloud_io.atomic_save(_checkpoint, filepath) | |
def query_func(opt, netG, features, points, proj_matrix=None): | |
""" | |
- points: size of (bz, N, 3) | |
- proj_matrix: size of (bz, 4, 4) | |
return: size of (bz, 1, N) | |
""" | |
assert len(points) == 1 | |
samples = points.repeat(opt.num_views, 1, 1) | |
samples = samples.permute(0, 2, 1) # [bz, 3, N] | |
# view specific query | |
if proj_matrix is not None: | |
samples = orthogonal(samples, proj_matrix) | |
calib_tensor = torch.stack([torch.eye(4).float()], dim=0).type_as(samples) | |
preds = netG.query( | |
features=features, | |
points=samples, | |
calibs=calib_tensor, | |
regressor=netG.if_regressor, | |
) | |
if type(preds) is list: | |
preds = preds[0] | |
return preds | |
def query_func_IF(batch, netG, points): | |
""" | |
- points: size of (bz, N, 3) | |
return: size of (bz, 1, N) | |
""" | |
batch["samples_geo"] = points | |
batch["calib"] = torch.stack([torch.eye(4).float()], dim=0).type_as(points) | |
preds = netG(batch) | |
return preds.unsqueeze(1) | |
def batch_mean(res, key): | |
return torch.stack( | |
[x[key] if torch.is_tensor(x[key]) else torch.as_tensor(x[key]) for x in res] | |
).mean() | |
def accumulate(outputs, rot_num, split): | |
hparam_log_dict = {} | |
metrics = outputs[0].keys() | |
datasets = split.keys() | |
for dataset in datasets: | |
for metric in metrics: | |
keyword = f"{dataset}/{metric}" | |
if keyword not in hparam_log_dict.keys(): | |
hparam_log_dict[keyword] = 0 | |
for idx in range(split[dataset][0] * rot_num, split[dataset][1] * rot_num): | |
hparam_log_dict[keyword] += outputs[idx][metric].item() | |
hparam_log_dict[keyword] /= (split[dataset][1] - split[dataset][0]) * rot_num | |
print(colored(hparam_log_dict, "green")) | |
return hparam_log_dict | |