Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import os | |
import numpy as np | |
import torch | |
import torchvision | |
import trimesh | |
import open3d as o3d | |
import tinyobjloader | |
import os.path as osp | |
import _pickle as cPickle | |
from termcolor import colored | |
from scipy.spatial import cKDTree | |
from pytorch3d.structures import Meshes | |
import torch.nn.functional as F | |
import lib.smplx as smplx | |
from lib.common.render_utils import Pytorch3dRasterizer | |
from pytorch3d.renderer.mesh import rasterize_meshes | |
from PIL import Image, ImageFont, ImageDraw | |
from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency | |
class Format: | |
end = '\033[0m' | |
start = '\033[4m' | |
class SMPLX: | |
def __init__(self): | |
self.current_dir = osp.join(osp.dirname(__file__), "../../data/smpl_related") | |
self.smpl_verts_path = osp.join(self.current_dir, "smpl_data/smpl_verts.npy") | |
self.smpl_faces_path = osp.join(self.current_dir, "smpl_data/smpl_faces.npy") | |
self.smplx_verts_path = osp.join(self.current_dir, "smpl_data/smplx_verts.npy") | |
self.smplx_faces_path = osp.join(self.current_dir, "smpl_data/smplx_faces.npy") | |
self.cmap_vert_path = osp.join(self.current_dir, "smpl_data/smplx_cmap.npy") | |
self.smplx_to_smplx_path = osp.join(self.current_dir, "smpl_data/smplx_to_smpl.pkl") | |
self.smplx_eyeball_fid_path = osp.join(self.current_dir, "smpl_data/eyeball_fid.npy") | |
self.smplx_fill_mouth_fid_path = osp.join(self.current_dir, "smpl_data/fill_mouth_fid.npy") | |
self.smplx_flame_vid_path = osp.join( | |
self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy" | |
) | |
self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl") | |
self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy") | |
self.smplx_vertex_lmkid_path = osp.join( | |
self.current_dir, "smpl_data/smplx_vertex_lmkid.npy" | |
) | |
self.smplx_faces = np.load(self.smplx_faces_path) | |
self.smplx_verts = np.load(self.smplx_verts_path) | |
self.smpl_verts = np.load(self.smpl_verts_path) | |
self.smpl_faces = np.load(self.smpl_faces_path) | |
self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path) | |
self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path) | |
self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path) | |
self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True) | |
self.smplx_mano_vid = np.concatenate( | |
[self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]] | |
) | |
self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True) | |
self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)] | |
# hands | |
self.mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
0, torch.tensor(self.smplx_mano_vid), 1.0 | |
) | |
# face | |
self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
0, torch.tensor(self.smplx_front_flame_vid), 1.0 | |
) | |
self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0 | |
) | |
self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, "rb")) | |
self.model_dir = osp.join(self.current_dir, "models") | |
self.tedra_dir = osp.join(self.current_dir, "../tedra_data") | |
self.ghum_smpl_pairs = torch.tensor( | |
[ | |
(0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19), | |
(15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40), | |
(23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29), | |
(32, 32) | |
] | |
).long() | |
# smpl-smplx correspondence | |
self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73] | |
self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68] | |
self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist() | |
self.extra_joint_ids = np.array( | |
[ | |
61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72, | |
74, 73 | |
] | |
) | |
self.extra_joint_ids += 68 | |
self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist()) | |
def cmap_smpl_vids(self, type): | |
# smplx_to_smpl.pkl | |
# KEYS: | |
# closest_faces - [6890, 3] with smplx vert_idx | |
# bc - [6890, 3] with barycentric weights | |
cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float() | |
if type == "smplx": | |
return cmap_smplx | |
elif type == "smpl": | |
bc = torch.as_tensor(self.smplx_to_smpl["bc"].astype(np.float32)) | |
closest_faces = self.smplx_to_smpl["closest_faces"].astype(np.int32) | |
cmap_smpl = torch.einsum("bij, bi->bj", cmap_smplx[closest_faces], bc) | |
return cmap_smpl | |
model_init_params = dict( | |
gender="male", | |
model_type="smplx", | |
model_path=SMPLX().model_dir, | |
create_global_orient=False, | |
create_body_pose=False, | |
create_betas=False, | |
create_left_hand_pose=False, | |
create_right_hand_pose=False, | |
create_expression=False, | |
create_jaw_pose=False, | |
create_leye_pose=False, | |
create_reye_pose=False, | |
create_transl=False, | |
num_pca_comps=12, | |
) | |
def get_smpl_model(model_type, gender): | |
return smplx.create(**model_init_params) | |
def load_fit_body(fitted_path, scale, smpl_type="smplx", smpl_gender="neutral", noise_dict=None): | |
param = np.load(fitted_path, allow_pickle=True) | |
for key in param.keys(): | |
param[key] = torch.as_tensor(param[key]) | |
smpl_model = get_smpl_model(smpl_type, smpl_gender) | |
model_forward_params = dict( | |
betas=param["betas"], | |
global_orient=param["global_orient"], | |
body_pose=param["body_pose"], | |
left_hand_pose=param["left_hand_pose"], | |
right_hand_pose=param["right_hand_pose"], | |
jaw_pose=param["jaw_pose"], | |
leye_pose=param["leye_pose"], | |
reye_pose=param["reye_pose"], | |
expression=param["expression"], | |
return_verts=True, | |
) | |
if noise_dict is not None: | |
model_forward_params.update(noise_dict) | |
smpl_out = smpl_model(**model_forward_params) | |
smpl_verts = ((smpl_out.vertices[0] * param["scale"] + param["translation"]) * scale).detach() | |
smpl_joints = ((smpl_out.joints[0] * param["scale"] + param["translation"]) * scale).detach() | |
smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False, maintain_order=True) | |
return smpl_mesh, smpl_joints | |
def apply_face_mask(mesh, face_mask): | |
mesh.update_faces(face_mask) | |
mesh.remove_unreferenced_vertices() | |
return mesh | |
def apply_vertex_mask(mesh, vertex_mask): | |
faces_mask = vertex_mask[mesh.faces].any(dim=1) | |
mesh = apply_face_mask(mesh, faces_mask) | |
return mesh | |
def apply_vertex_face_mask(mesh, vertex_mask, face_mask): | |
faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask) | |
mesh.update_faces(faces_mask) | |
mesh.remove_unreferenced_vertices() | |
return mesh | |
def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True): | |
smpl_tree = cKDTree(smpl_obj.vertices) | |
SMPL_container = SMPLX() | |
from lib.dataset.PointFeat import PointFeat | |
part_extractor = PointFeat( | |
torch.tensor(part_mesh.vertices).unsqueeze(0).to(device), | |
torch.tensor(part_mesh.faces).unsqueeze(0).to(device) | |
) | |
(part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device)) | |
remove_mask = part_dist < thres | |
if region == "hand": | |
_, idx = smpl_tree.query(full_mesh.vertices, k=1) | |
full_lmkid = SMPL_container.smplx_vertex_lmkid[idx] | |
remove_mask = torch.logical_and( | |
remove_mask, | |
torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0) | |
) | |
elif region == "face": | |
_, idx = smpl_tree.query(full_mesh.vertices, k=5) | |
face_space_mask = torch.isin( | |
torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid) | |
) | |
remove_mask = torch.logical_and( | |
remove_mask, | |
face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0) | |
) | |
BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1) | |
full_mesh.update_faces(BNI_part_mask.detach().cpu()) | |
full_mesh.remove_unreferenced_vertices() | |
if clean: | |
full_mesh = clean_floats(full_mesh) | |
return full_mesh | |
def obj_loader(path, with_uv=True): | |
# Create reader. | |
reader = tinyobjloader.ObjReader() | |
# Load .obj(and .mtl) using default configuration | |
ret = reader.ParseFromFile(path) | |
# note here for wavefront obj, #v might not equal to #vt, same as #vn. | |
attrib = reader.GetAttrib() | |
v = np.array(attrib.vertices).reshape(-1, 3) | |
vt = np.array(attrib.texcoords).reshape(-1, 2) | |
shapes = reader.GetShapes() | |
tri = shapes[0].mesh.numpy_indices().reshape(-1, 9) | |
f_v = tri[:, [0, 3, 6]] | |
f_vt = tri[:, [2, 5, 8]] | |
if with_uv: | |
face_uvs = vt[f_vt].mean(axis=1) #[m, 2] | |
vert_uvs = np.zeros((v.shape[0], 2), dtype=np.float32) #[n, 2] | |
vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)] | |
return v, f_v, vert_uvs, face_uvs | |
else: | |
return v, f_v | |
class HoppeMesh: | |
def __init__(self, verts, faces, uvs=None, texture=None): | |
""" | |
The HoppeSDF calculates signed distance towards a predefined oriented point cloud | |
http://hhoppe.com/recon.pdf | |
For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf | |
""" | |
# self.device = torch.device("cuda:0") | |
mesh = trimesh.Trimesh(verts, faces, process=False, maintains_order=True) | |
self.verts = torch.tensor(verts).float() | |
self.faces = torch.tensor(faces).long() | |
self.vert_normals = torch.tensor(mesh.vertex_normals).float() | |
if (uvs is not None) and (texture is not None): | |
self.vertex_colors = trimesh.visual.color.uv_to_color(uvs, texture) | |
self.face_normals = torch.tensor(mesh.face_normals).float() | |
def get_colors(self, points, faces): | |
""" | |
Get colors of surface points from texture image through | |
barycentric interpolation. | |
- points: [n, 3] | |
- return: [n, 4] rgba | |
""" | |
triangles = self.verts[faces] #[n, 3, 3] | |
barycentric = trimesh.triangles.points_to_barycentric(triangles, points) #[n, 3] | |
vert_colors = self.vertex_colors[faces] #[n, 3, 4] | |
point_colors = torch.tensor((barycentric[:, :, None] * vert_colors).sum(axis=1)).float() | |
return point_colors | |
def triangles(self): | |
return self.verts[self.faces].numpy() #[n, 3, 3] | |
def tensor2variable(tensor, device): | |
return tensor.requires_grad_(True).to(device) | |
def mesh_edge_loss(meshes, target_length: float = 0.0): | |
""" | |
Computes mesh edge length regularization loss averaged across all meshes | |
in a batch. Each mesh contributes equally to the final loss, regardless of | |
the number of edges per mesh in the batch by weighting each mesh with the | |
inverse number of edges. For example, if mesh 3 (out of N) has only E=4 | |
edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to | |
contribute to the final loss. | |
Args: | |
meshes: Meshes object with a batch of meshes. | |
target_length: Resting value for the edge length. | |
Returns: | |
loss: Average loss across the batch. Returns 0 if meshes contains | |
no meshes or all empty meshes. | |
""" | |
if meshes.isempty(): | |
return torch.tensor([0.0], dtype=torch.float32, device=meshes.device, requires_grad=True) | |
N = len(meshes) | |
edges_packed = meshes.edges_packed() # (sum(E_n), 3) | |
verts_packed = meshes.verts_packed() # (sum(V_n), 3) | |
edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) | |
num_edges_per_mesh = meshes.num_edges_per_mesh() # N | |
# Determine the weight for each edge based on the number of edges in the | |
# mesh it corresponds to. | |
# TODO (nikhilar) Find a faster way of computing the weights for each edge | |
# as this is currently a bottleneck for meshes with a large number of faces. | |
weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) | |
weights = 1.0 / weights.float() | |
verts_edges = verts_packed[edges_packed] | |
v0, v1 = verts_edges.unbind(1) | |
loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0 | |
loss_vertex = loss * weights | |
# loss_outlier = torch.topk(loss, 100)[0].mean() | |
# loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N | |
loss_all = loss_vertex.sum() / N | |
return loss_all | |
def remesh_laplacian(mesh, obj_path): | |
mesh = mesh.simplify_quadratic_decimation(50000) | |
mesh = trimesh.smoothing.filter_humphrey( | |
mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None | |
) | |
mesh.export(obj_path) | |
return mesh | |
def poisson(mesh, obj_path, depth=10): | |
pcd_path = obj_path[:-4] + ".ply" | |
assert (mesh.vertex_normals.shape[1] == 3) | |
mesh.export(pcd_path) | |
pcl = o3d.io.read_point_cloud(pcd_path) | |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm: | |
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcl, depth=depth, n_threads=-1 | |
) | |
print(colored(f"\n Poisson completion to {Format.start} {obj_path} {Format.end}", "yellow")) | |
# only keep the largest component | |
largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles))) | |
largest_mesh.export(obj_path) | |
# mesh decimation for faster rendering | |
low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000) | |
return low_res_mesh | |
# Losses to smooth / regularize the mesh shape | |
def update_mesh_shape_prior_losses(mesh, losses): | |
# and (b) the edge length of the predicted mesh | |
losses["edge"]["value"] = mesh_edge_loss(mesh) | |
# mesh normal consistency | |
losses["nc"]["value"] = mesh_normal_consistency(mesh) | |
# mesh laplacian smoothing | |
losses["lapla"]["value"] = mesh_laplacian_smoothing(mesh, method="uniform") | |
def read_smpl_constants(folder): | |
"""Load smpl vertex code""" | |
smpl_vtx_std = np.loadtxt(os.path.join(folder, "vertices.txt")) | |
min_x = np.min(smpl_vtx_std[:, 0]) | |
max_x = np.max(smpl_vtx_std[:, 0]) | |
min_y = np.min(smpl_vtx_std[:, 1]) | |
max_y = np.max(smpl_vtx_std[:, 1]) | |
min_z = np.min(smpl_vtx_std[:, 2]) | |
max_z = np.max(smpl_vtx_std[:, 2]) | |
smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) | |
smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) | |
smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) | |
smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) | |
"""Load smpl faces & tetrahedrons""" | |
smpl_faces = np.loadtxt(os.path.join(folder, "faces.txt"), dtype=np.int32) - 1 | |
smpl_face_code = ( | |
smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] + | |
smpl_vertex_code[smpl_faces[:, 2]] | |
) / 3.0 | |
smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1) | |
return_dict = { | |
"smpl_vertex_code": torch.tensor(smpl_vertex_code), | |
"smpl_face_code": torch.tensor(smpl_face_code), | |
"smpl_faces": torch.tensor(smpl_faces), | |
"smpl_tetras": torch.tensor(smpl_tetras) | |
} | |
return return_dict | |
def get_visibility(xy, z, faces, img_res=2**12, blur_radius=0.0, faces_per_pixel=1): | |
"""get the visibility of vertices | |
Args: | |
xy (torch.tensor): [B, N,2] | |
z (torch.tensor): [B, N,1] | |
faces (torch.tensor): [B, N,3] | |
size (int): resolution of rendered image | |
""" | |
if xy.ndimension() == 2: | |
xy = xy.unsqueeze(0) | |
z = z.unsqueeze(0) | |
faces = faces.unsqueeze(0) | |
xyz = (torch.cat((xy, -z), dim=-1) + 1.) / 2. | |
N_body = xyz.shape[0] | |
faces = faces.long().repeat(N_body, 1, 1) | |
vis_mask = torch.zeros(size=(N_body, z.shape[1])) | |
rasterizer = Pytorch3dRasterizer(image_size=img_res) | |
meshes_screen = Meshes(verts=xyz, faces=faces) | |
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( | |
meshes_screen, | |
image_size=rasterizer.raster_settings.image_size, | |
blur_radius=blur_radius, | |
faces_per_pixel=faces_per_pixel, | |
bin_size=rasterizer.raster_settings.bin_size, | |
max_faces_per_bin=rasterizer.raster_settings.max_faces_per_bin, | |
perspective_correct=rasterizer.raster_settings.perspective_correct, | |
cull_backfaces=rasterizer.raster_settings.cull_backfaces, | |
) | |
pix_to_face = pix_to_face.detach().cpu().view(N_body, -1) | |
faces = faces.detach().cpu() | |
for idx in range(N_body): | |
Num_faces = len(faces[idx]) | |
vis_vertices_id = torch.unique( | |
faces[idx][torch.unique(pix_to_face[idx][pix_to_face[idx] != -1]) - Num_faces * idx, :] | |
) | |
vis_mask[idx, vis_vertices_id] = 1.0 | |
# print("------------------------\n") | |
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}") | |
return vis_mask | |
def barycentric_coordinates_of_projection(points, vertices): | |
"""https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py""" | |
"""Given a point, gives projected coords of that point to a triangle | |
in barycentric coordinates. | |
See | |
**Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 | |
at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf | |
:param p: point to project. [B, 3] | |
:param v0: first vertex of triangles. [B, 3] | |
:returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` | |
vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` | |
""" | |
# (p, q, u, v) | |
v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] | |
u = v1 - v0 | |
v = v2 - v0 | |
n = torch.cross(u, v) | |
sb = torch.sum(n * n, dim=1) | |
# If the triangle edges are collinear, cross-product is zero, | |
# which makes "s" 0, which gives us divide by zero. So we | |
# make the arbitrary choice to set s to epsv (=numpy.spacing(1)), | |
# the closest thing to zero | |
sb[sb == 0] = 1e-6 | |
oneOver4ASquared = 1.0 / sb | |
w = points - v0 | |
b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared | |
b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared | |
weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) | |
# check barycenric weights | |
# p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] | |
return weights | |
def orthogonal(points, calibrations, transforms=None): | |
""" | |
Compute the orthogonal projections of 3D points into the image plane by given projection matrix | |
:param points: [B, 3, N] Tensor of 3D points | |
:param calibrations: [B, 3, 4] Tensor of projection matrix | |
:param transforms: [B, 2, 3] Tensor of image transform matrix | |
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane | |
""" | |
rot = calibrations[:, :3, :3] | |
trans = calibrations[:, :3, 3:4] | |
pts = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
if transforms is not None: | |
scale = transforms[:2, :2] | |
shift = transforms[:2, 2:3] | |
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) | |
return pts | |
def projection(points, calib): | |
if torch.is_tensor(points): | |
calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib | |
return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] | |
else: | |
return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] | |
def load_calib(calib_path): | |
calib_data = np.loadtxt(calib_path, dtype=float) | |
extrinsic = calib_data[:4, :4] | |
intrinsic = calib_data[4:8, :4] | |
calib_mat = np.matmul(intrinsic, extrinsic) | |
calib_mat = torch.from_numpy(calib_mat).float() | |
return calib_mat | |
def normalize_v3(arr): | |
""" Normalize a numpy array of 3 component vectors shape=(n,3) """ | |
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) | |
eps = 0.00000001 | |
lens[lens < eps] = eps | |
arr[:, 0] /= lens | |
arr[:, 1] /= lens | |
arr[:, 2] /= lens | |
return arr | |
def compute_normal(vertices, faces): | |
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal | |
vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) | |
# Create an indexed view into the vertex array using the array of three indices for triangles | |
tris = vertices[faces] | |
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle | |
face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) | |
# n is now an array of normals per triangle. The length of each normal is dependent the vertices, | |
# we need to normalize these, so that our next step weights each normal equally. | |
normalize_v3(face_norms) | |
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals. | |
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, | |
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. | |
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array | |
vert_norms[faces[:, 0]] += face_norms | |
vert_norms[faces[:, 1]] += face_norms | |
vert_norms[faces[:, 2]] += face_norms | |
normalize_v3(vert_norms) | |
return vert_norms, face_norms | |
def face_vertices(vertices, faces): | |
""" | |
:param vertices: [batch size, number of vertices, 3] | |
:param faces: [batch size, number of faces, 3] | |
:return: [batch size, number of faces, 3, 3] | |
""" | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
device = vertices.device | |
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] | |
vertices = vertices.reshape((bs * nv, vertices.shape[-1])) | |
return vertices[faces.long()] | |
def compute_normal_batch(vertices, faces): | |
if faces.shape[0] != vertices.shape[0]: | |
faces = faces.repeat(vertices.shape[0], 1, 1) | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
vert_norm = torch.zeros(bs * nv, 3).type_as(vertices) | |
tris = face_vertices(vertices, faces) | |
face_norm = F.normalize( | |
torch.cross(tris[:, :, 1] - tris[:, :, 0], tris[:, :, 2] - tris[:, :, 0]), | |
dim=-1, | |
) | |
faces = (faces + (torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(-1, 3) | |
vert_norm[faces[:, 0]] += face_norm.view(-1, 3) | |
vert_norm[faces[:, 1]] += face_norm.view(-1, 3) | |
vert_norm[faces[:, 2]] += face_norm.view(-1, 3) | |
vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3) | |
return vert_norm | |
def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"): | |
font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") | |
font = ImageFont.truetype(font_path, 30) | |
grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow, padding=0) | |
grid_img = Image.fromarray( | |
((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8) | |
) | |
if False: | |
# add text | |
draw = ImageDraw.Draw(grid_img) | |
grid_size = 512 | |
if loss is not None: | |
draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) | |
if type == "smpl": | |
for col_id, col_txt in enumerate( | |
[ | |
"image", | |
"smpl-norm(render)", | |
"cloth-norm(pred)", | |
"diff-norm", | |
"diff-mask", | |
] | |
): | |
draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font) | |
elif type == "cloth": | |
for col_id, col_txt in enumerate( | |
["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"] | |
): | |
draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font) | |
for col_id, col_txt in enumerate(["0", "90", "180", "270"]): | |
draw.text( | |
(10 + (col_id * grid_size), grid_size * 2 + 5), | |
col_txt, | |
(255, 0, 0), | |
font=font, | |
) | |
else: | |
print(f"{type} should be 'smpl' or 'cloth'") | |
grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS) | |
return grid_img | |
def clean_mesh(verts, faces): | |
device = verts.device | |
mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy()) | |
largest_mesh = keep_largest(mesh_lst) | |
final_verts = torch.as_tensor(largest_mesh.vertices).float().to(device) | |
final_faces = torch.as_tensor(largest_mesh.faces).long().to(device) | |
return final_verts, final_faces | |
def clean_floats(mesh): | |
thres = mesh.vertices.shape[0] * 1e-2 | |
mesh_lst = mesh.split(only_watertight=False) | |
clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres] | |
return sum(clean_mesh_lst) | |
def keep_largest(mesh): | |
mesh_lst = mesh.split(only_watertight=False) | |
keep_mesh = mesh_lst[0] | |
for mesh in mesh_lst: | |
if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]: | |
keep_mesh = mesh | |
return keep_mesh | |
def mesh_move(mesh_lst, step, scale=1.0): | |
trans = np.array([1.0, 0.0, 0.0]) * step | |
resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=trans) | |
results = [] | |
for mesh in mesh_lst: | |
mesh.apply_transform(resize_matrix) | |
results.append(mesh) | |
return results | |
def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)): | |
fitted_body = trimesh.load(fitted_path, process=False, maintain_order=True, skip_materials=True) | |
resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=translate) | |
fitted_body.apply_transform(resize_matrix) | |
return np.array(fitted_body.vertices) | |
def get_joint_mesh(joints, radius=2.0): | |
ball = trimesh.creation.icosphere(radius=radius) | |
combined = None | |
for joint in joints: | |
ball_new = trimesh.Trimesh(vertices=ball.vertices + joint, faces=ball.faces, process=False) | |
if combined is None: | |
combined = ball_new | |
else: | |
combined = sum([combined, ball_new]) | |
return combined | |