Spaces:
Runtime error
Runtime error
# This script is borrowed from https://github.com/nkolot/SPIN/blob/master/models/hmr.py | |
import torch | |
import torch.nn as nn | |
import torchvision.models.resnet as resnet | |
import numpy as np | |
import math | |
from lib.net.geometry import rot6d_to_rotmat | |
import logging | |
logger = logging.getLogger(__name__) | |
BN_MOMENTUM = 0.1 | |
class Bottleneck(nn.Module): | |
""" Redefinition of Bottleneck residual block | |
Adapted from the official PyTorch implementation | |
""" | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super().__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet_Backbone(nn.Module): | |
""" Feature Extrator with ResNet backbone | |
""" | |
def __init__(self, model='res50', pretrained=True): | |
if model == 'res50': | |
block, layers = Bottleneck, [3, 4, 6, 3] | |
else: | |
pass # TODO | |
self.inplanes = 64 | |
super().__init__() | |
npose = 24 * 6 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.avgpool = nn.AvgPool2d(7, stride=1) | |
if pretrained: | |
resnet_imagenet = resnet.resnet50(pretrained=True) | |
self.load_state_dict(resnet_imagenet.state_dict(), strict=False) | |
logger.info('loaded resnet50 imagenet pretrained model') | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): | |
assert num_layers == len(num_filters), \ | |
'ERROR: num_deconv_layers is different len(num_deconv_filters)' | |
assert num_layers == len(num_kernels), \ | |
'ERROR: num_deconv_layers is different len(num_deconv_filters)' | |
def _get_deconv_cfg(deconv_kernel, index): | |
if deconv_kernel == 4: | |
padding = 1 | |
output_padding = 0 | |
elif deconv_kernel == 3: | |
padding = 1 | |
output_padding = 1 | |
elif deconv_kernel == 2: | |
padding = 0 | |
output_padding = 0 | |
return deconv_kernel, padding, output_padding | |
layers = [] | |
for i in range(num_layers): | |
kernel, padding, output_padding = _get_deconv_cfg(num_kernels[i], i) | |
planes = num_filters[i] | |
layers.append( | |
nn.ConvTranspose2d( | |
in_channels=self.inplanes, | |
out_channels=planes, | |
kernel_size=kernel, | |
stride=2, | |
padding=padding, | |
output_padding=output_padding, | |
bias=self.deconv_with_bias | |
) | |
) | |
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)) | |
layers.append(nn.ReLU(inplace=True)) | |
self.inplanes = planes | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
batch_size = x.shape[0] | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x1 = self.layer1(x) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
xf = self.avgpool(x4) | |
xf = xf.view(xf.size(0), -1) | |
x_featmap = x4 | |
return x_featmap, xf | |
class HMR(nn.Module): | |
""" SMPL Iterative Regressor with ResNet50 backbone | |
""" | |
def __init__(self, block, layers, smpl_mean_params): | |
self.inplanes = 64 | |
super().__init__() | |
npose = 24 * 6 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.avgpool = nn.AvgPool2d(7, stride=1) | |
self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024) | |
self.drop1 = nn.Dropout() | |
self.fc2 = nn.Linear(1024, 1024) | |
self.drop2 = nn.Dropout() | |
self.decpose = nn.Linear(1024, npose) | |
self.decshape = nn.Linear(1024, 10) | |
self.deccam = nn.Linear(1024, 3) | |
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
mean_params = np.load(smpl_mean_params) | |
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0) | |
init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0) | |
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0) | |
self.register_buffer('init_pose', init_pose) | |
self.register_buffer('init_shape', init_shape) | |
self.register_buffer('init_cam', init_cam) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3): | |
batch_size = x.shape[0] | |
if init_pose is None: | |
init_pose = self.init_pose.expand(batch_size, -1) | |
if init_shape is None: | |
init_shape = self.init_shape.expand(batch_size, -1) | |
if init_cam is None: | |
init_cam = self.init_cam.expand(batch_size, -1) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x1 = self.layer1(x) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
xf = self.avgpool(x4) | |
xf = xf.view(xf.size(0), -1) | |
pred_pose = init_pose | |
pred_shape = init_shape | |
pred_cam = init_cam | |
for i in range(n_iter): | |
xc = torch.cat([xf, pred_pose, pred_shape, pred_cam], 1) | |
xc = self.fc1(xc) | |
xc = self.drop1(xc) | |
xc = self.fc2(xc) | |
xc = self.drop2(xc) | |
pred_pose = self.decpose(xc) + pred_pose | |
pred_shape = self.decshape(xc) + pred_shape | |
pred_cam = self.deccam(xc) + pred_cam | |
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3) | |
return pred_rotmat, pred_shape, pred_cam | |
def hmr(smpl_mean_params, pretrained=True, **kwargs): | |
""" Constructs an HMR model with ResNet50 backbone. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs) | |
if pretrained: | |
resnet_imagenet = resnet.resnet50(pretrained=True) | |
model.load_state_dict(resnet_imagenet.state_dict(), strict=False) | |
return model | |