Spaces:
Runtime error
Runtime error
""" | |
This file contains functions that are used to perform data augmentation. | |
""" | |
import torch | |
import numpy as np | |
import cv2 | |
import skimage.transform | |
from PIL import Image | |
from lib.pymafx.core import constants | |
def get_transform(center, scale, res, rot=0): | |
"""Generate transformation matrix.""" | |
h = 200 * scale | |
t = np.zeros((3, 3)) | |
t[0, 0] = float(res[1]) / h | |
t[1, 1] = float(res[0]) / h | |
t[0, 2] = res[1] * (-float(center[0]) / h + .5) | |
t[1, 2] = res[0] * (-float(center[1]) / h + .5) | |
t[2, 2] = 1 | |
if not rot == 0: | |
t = np.dot(get_rot_transf(res, rot), t) | |
return t | |
def get_rot_transf(res, rot): | |
"""Generate rotation transformation matrix.""" | |
if rot == 0: | |
return np.identity(3) | |
rot = -rot # To match direction of rotation from cropping | |
rot_mat = np.zeros((3, 3)) | |
rot_rad = rot * np.pi / 180 | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
rot_mat[0, :2] = [cs, -sn] | |
rot_mat[1, :2] = [sn, cs] | |
rot_mat[2, 2] = 1 | |
# Need to rotate around center | |
t_mat = np.eye(3) | |
t_mat[0, 2] = -res[1] / 2 | |
t_mat[1, 2] = -res[0] / 2 | |
t_inv = t_mat.copy() | |
t_inv[:2, 2] *= -1 | |
rot_transf = np.dot(t_inv, np.dot(rot_mat, t_mat)) | |
return rot_transf | |
def transform(pt, center, scale, res, invert=0, rot=0): | |
"""Transform pixel location to different reference.""" | |
t = get_transform(center, scale, res, rot=rot) | |
if invert: | |
t = np.linalg.inv(t) | |
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T | |
new_pt = np.dot(t, new_pt) | |
return new_pt[:2].astype(int) + 1 | |
def transform_pts(coords, center, scale, res, invert=0, rot=0): | |
"""Transform coordinates (N x 2) to different reference.""" | |
new_coords = coords.copy() | |
for p in range(coords.shape[0]): | |
new_coords[p, 0:2] = transform(coords[p, 0:2], center, scale, res, invert, rot) | |
return new_coords | |
def crop(img, center, scale, res, rot=0): | |
"""Crop image according to the supplied bounding box.""" | |
# Upper left point | |
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
# Bottom right point | |
br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 | |
# Padding so that when rotated proper amount of context is included | |
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) | |
if not rot == 0: | |
ul -= pad | |
br += pad | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(new_shape) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(len(img[0]), br[0]) | |
old_y = max(0, ul[1]), min(len(img), br[1]) | |
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] | |
if not rot == 0: | |
# Remove padding | |
new_img = skimage.transform.rotate(new_img, rot).astype(np.uint8) | |
new_img = new_img[pad:-pad, pad:-pad] | |
new_img_resized = np.array(Image.fromarray(new_img.astype(np.uint8)).resize(res)) | |
return new_img_resized, new_img, new_shape | |
def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True): | |
"""'Undo' the image cropping/resizing. | |
This function is used when evaluating mask/part segmentation. | |
""" | |
res = img.shape[:2] | |
# Upper left point | |
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
# Bottom right point | |
br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 | |
# size of cropped image | |
crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(orig_shape, dtype=np.uint8) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) | |
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] | |
return new_img | |
def rot_aa(aa, rot): | |
"""Rotate axis angle parameters.""" | |
# pose parameters | |
R = np.array( | |
[ | |
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1] | |
] | |
) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
aa = (resrot.T)[0] | |
return aa | |
def flip_img(img): | |
"""Flip rgb images or masks. | |
channels come last, e.g. (256,256,3). | |
""" | |
img = np.fliplr(img) | |
return img | |
def flip_kp(kp, is_smpl=False, type='body'): | |
"""Flip keypoints.""" | |
assert type in ['body', 'hand', 'face', 'feet'] | |
if type == 'body': | |
if len(kp) == 24: | |
if is_smpl: | |
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM | |
else: | |
flipped_parts = constants.J24_FLIP_PERM | |
elif len(kp) == 49: | |
if is_smpl: | |
flipped_parts = constants.SMPL_J49_FLIP_PERM | |
else: | |
flipped_parts = constants.J49_FLIP_PERM | |
elif type == 'hand': | |
if len(kp) == 21: | |
flipped_parts = constants.SINGLE_HAND_FLIP_PERM | |
elif len(kp) == 42: | |
flipped_parts = constants.LRHAND_FLIP_PERM | |
elif type == 'face': | |
flipped_parts = constants.FACE_FLIP_PERM | |
elif type == 'feet': | |
flipped_parts = constants.FEEF_FLIP_PERM | |
kp = kp[flipped_parts] | |
kp[:, 0] = -kp[:, 0] | |
return kp | |
def flip_pose(pose): | |
"""Flip pose. | |
The flipping is based on SMPL parameters. | |
""" | |
flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
pose = pose[flipped_parts] | |
# we also negate the second and the third dimension of the axis-angle | |
pose[1::3] = -pose[1::3] | |
pose[2::3] = -pose[2::3] | |
return pose | |
def flip_aa(pose): | |
"""Flip aa. | |
""" | |
# we also negate the second and the third dimension of the axis-angle | |
if len(pose.shape) == 1: | |
pose[1::3] = -pose[1::3] | |
pose[2::3] = -pose[2::3] | |
elif len(pose.shape) == 2: | |
pose[:, 1::3] = -pose[:, 1::3] | |
pose[:, 2::3] = -pose[:, 2::3] | |
else: | |
raise NotImplementedError | |
return pose | |
def normalize_2d_kp(kp_2d, crop_size=224, inv=False): | |
# Normalize keypoints between -1, 1 | |
if not inv: | |
ratio = 1.0 / crop_size | |
kp_2d = 2.0 * kp_2d * ratio - 1.0 | |
else: | |
ratio = 1.0 / crop_size | |
kp_2d = (kp_2d + 1.0) / (2 * ratio) | |
return kp_2d | |
def j2d_processing(kp, transf): | |
"""Process gt 2D keypoints and apply transforms.""" | |
# nparts = kp.shape[1] | |
bs, npart = kp.shape[:2] | |
kp_pad = torch.cat([kp, torch.ones((bs, npart, 1)).to(kp)], dim=-1) | |
kp_new = torch.bmm(transf, kp_pad.transpose(1, 2)) | |
kp_new = kp_new.transpose(1, 2) | |
kp_new[:, :, :-1] = 2. * kp_new[:, :, :-1] / constants.IMG_RES - 1. | |
return kp_new[:, :, :2] | |
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): | |
''' | |
param joints: [num_joints, 3] | |
param joints_vis: [num_joints, 3] | |
return: target, target_weight(1: visible, 0: invisible) | |
''' | |
num_joints = joints.shape[0] | |
device = joints.device | |
cur_device = torch.device(device.type, device.index) | |
if not hasattr(heatmap_size, '__len__'): | |
# width height | |
heatmap_size = [heatmap_size, heatmap_size] | |
assert len(heatmap_size) == 2 | |
target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
if joints_vis is not None: | |
target_weight[:, 0] = joints_vis[:, 0] | |
target = torch.zeros( | |
(num_joints, heatmap_size[1], heatmap_size[0]), dtype=torch.float32, device=cur_device | |
) | |
tmp_size = sigma * 3 | |
for joint_id in range(num_joints): | |
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) | |
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \ | |
or br[0] < 0 or br[1] < 0: | |
# If not, just return the image as is | |
target_weight[joint_id] = 0 | |
continue | |
# # Generate gaussian | |
size = 2 * tmp_size + 1 | |
# x = np.arange(0, size, 1, np.float32) | |
# y = x[:, np.newaxis] | |
# x0 = y0 = size // 2 | |
# # The gaussian is not normalized, we want the center value to equal 1 | |
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
# g = torch.from_numpy(g.astype(np.float32)) | |
x = torch.arange(0, size, dtype=torch.float32, device=cur_device) | |
y = x.unsqueeze(-1) | |
x0 = y0 = size // 2 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) | |
img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) | |
v = target_weight[joint_id] | |
if v > 0.5: | |
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ | |
g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return target, target_weight | |