ECON / lib /pymafx /utils /keypoints.py
Yuliang's picture
remove MeshLab dependency with Open3D
fb140f6
raw
history blame
13.1 kB
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Keypoint utilities (somewhat specific to COCO keypoints)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torch.cuda.comm
# from core.config import cfg
# import utils.blob as blob_utils
def get_keypoints():
"""Get the COCO keypoints and their left/right flip coorespondence map."""
# Keypoints are not available in the COCO json for the test split, so we
# provide them here.
keypoints = [
'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder',
'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip',
'left_knee', 'right_knee', 'left_ankle', 'right_ankle'
]
keypoint_flip_map = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'
}
return keypoints, keypoint_flip_map
def get_person_class_index():
"""Index of the person class in COCO."""
return 1
def flip_keypoints(keypoints, keypoint_flip_map, keypoint_coords, width):
"""Left/right flip keypoint_coords. keypoints and keypoint_flip_map are
accessible from get_keypoints().
"""
flipped_kps = keypoint_coords.copy()
for lkp, rkp in keypoint_flip_map.items():
lid = keypoints.index(lkp)
rid = keypoints.index(rkp)
flipped_kps[:, :, lid] = keypoint_coords[:, :, rid]
flipped_kps[:, :, rid] = keypoint_coords[:, :, lid]
# Flip x coordinates
flipped_kps[:, 0, :] = width - flipped_kps[:, 0, :] - 1
# Maintain COCO convention that if visibility == 0, then x, y = 0
inds = np.where(flipped_kps[:, 2, :] == 0)
flipped_kps[inds[0], 0, inds[1]] = 0
return flipped_kps
def flip_heatmaps(heatmaps):
"""Flip heatmaps horizontally."""
keypoints, flip_map = get_keypoints()
heatmaps_flipped = heatmaps.copy()
for lkp, rkp in flip_map.items():
lid = keypoints.index(lkp)
rid = keypoints.index(rkp)
heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :]
heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :]
heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1]
return heatmaps_flipped
def heatmaps_to_keypoints(maps, rois):
"""Extract predicted keypoint locations from heatmaps. Output has shape
(#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
for each keypoint.
"""
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
# consistency with keypoints_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = np.maximum(widths, 1)
heights = np.maximum(heights, 1)
widths_ceil = np.ceil(widths)
heights_ceil = np.ceil(heights)
# NCHW to NHWC for use with OpenCV
maps = np.transpose(maps, [0, 2, 3, 1])
min_size = cfg.KRCNN.INFERENCE_MIN_SIZE
xy_preds = np.zeros((len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32)
for i in range(len(rois)):
if min_size > 0:
roi_map_width = int(np.maximum(widths_ceil[i], min_size))
roi_map_height = int(np.maximum(heights_ceil[i], min_size))
else:
roi_map_width = widths_ceil[i]
roi_map_height = heights_ceil[i]
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = cv2.resize(
maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC
)
# Bring back to CHW
roi_map = np.transpose(roi_map, [2, 0, 1])
roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
for k in range(cfg.KRCNN.NUM_KEYPOINTS):
pos = roi_map[k, :, :].argmax()
x_int = pos % w
y_int = (pos - x_int) // w
assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max())
x = (x_int + 0.5) * width_correction
y = (y_int + 0.5) * height_correction
xy_preds[i, 0, k] = x + offset_x[i]
xy_preds[i, 1, k] = y + offset_y[i]
xy_preds[i, 2, k] = roi_map[k, y_int, x_int]
xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int]
return xy_preds
def keypoints_to_heatmap_labels(keypoints, rois):
"""Encode keypoint location in the target heatmap for use in
SoftmaxWithLoss.
"""
# Maps keypoints from the half-open interval [x1, x2) on continuous image
# coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image
# coordinates. We use the continuous <-> discrete conversion from Heckbert
# 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5,
# where d is a discrete coordinate and c is a continuous coordinate.
assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS
shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS)
heatmaps = blob_utils.zeros(shape)
weights = blob_utils.zeros(shape)
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0])
scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1])
for kp in range(keypoints.shape[2]):
vis = keypoints[:, 2, kp] > 0
x = keypoints[:, 0, kp].astype(np.float32)
y = keypoints[:, 1, kp].astype(np.float32)
# Since we use floor below, if a keypoint is exactly on the roi's right
# or bottom boundary, we shift it in by eps (conceptually) to keep it in
# the ground truth heatmap.
x_boundary_inds = np.where(x == rois[:, 2])[0]
y_boundary_inds = np.where(y == rois[:, 3])[0]
x = (x - offset_x) * scale_x
x = np.floor(x)
if len(x_boundary_inds) > 0:
x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1
y = (y - offset_y) * scale_y
y = np.floor(y)
if len(y_boundary_inds) > 0:
y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1
valid_loc = np.logical_and(
np.logical_and(x >= 0, y >= 0),
np.logical_and(x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE)
)
valid = np.logical_and(valid_loc, vis)
valid = valid.astype(np.int32)
lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x
heatmaps[:, kp] = lin_ind * valid
weights[:, kp] = valid
return heatmaps, weights
def scores_to_probs(scores):
"""Transforms CxHxW of scores to probabilities spatially."""
channels = scores.shape[0]
for c in range(channels):
temp = scores[c, :, :]
max_score = temp.max()
temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score))
scores[c, :, :] = temp
return scores
def nms_oks(kp_predictions, rois, thresh):
"""Nms based on kp predictions."""
scores = np.mean(kp_predictions[:, 2, :], axis=1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = compute_oks(kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi):
"""Compute OKS for predicted keypoints wrt gt_keypoints.
src_keypoints: 4xK
src_roi: 4x1
dst_keypoints: Nx4xK
dst_roi: Nx4
"""
sigmas = np.array(
[.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]
) / 10.0
vars = (sigmas * 2)**2
# area
src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1)
# measure the per-keypoint distance if keypoints visible
dx = dst_keypoints[:, 0, :] - src_keypoints[0, :]
dy = dst_keypoints[:, 1, :] - src_keypoints[1, :]
e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2
e = np.sum(np.exp(-e), axis=1) / e.shape[1]
return e
def get_max_preds(batch_heatmaps):
'''
get predictions from score maps
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
'''
assert isinstance(batch_heatmaps, np.ndarray), \
'batch_heatmaps should be numpy.ndarray'
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = batch_heatmaps.shape[0]
num_joints = batch_heatmaps.shape[1]
width = batch_heatmaps.shape[3]
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def generate_3d_integral_preds_tensor(heatmaps, num_joints, x_dim, y_dim, z_dim):
assert isinstance(heatmaps, torch.Tensor)
if z_dim is not None:
heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, z_dim, y_dim, x_dim))
accu_x = heatmaps.sum(dim=2)
accu_x = accu_x.sum(dim=2)
accu_y = heatmaps.sum(dim=2)
accu_y = accu_y.sum(dim=3)
accu_z = heatmaps.sum(dim=3)
accu_z = accu_z.sum(dim=3)
accu_x = accu_x * torch.cuda.comm.broadcast(
torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index]
)[0]
accu_y = accu_y * torch.cuda.comm.broadcast(
torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index]
)[0]
accu_z = accu_z * torch.cuda.comm.broadcast(
torch.arange(z_dim, dtype=torch.float32), devices=[accu_z.device.index]
)[0]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = accu_z.sum(dim=2, keepdim=True)
else:
heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, y_dim, x_dim))
accu_x = heatmaps.sum(dim=2)
accu_y = heatmaps.sum(dim=3)
accu_x = accu_x * torch.cuda.comm.broadcast(
torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index]
)[0]
accu_y = accu_y * torch.cuda.comm.broadcast(
torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index]
)[0]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = None
return accu_x, accu_y, accu_z
# integral pose estimation
# https://github.com/JimmySuen/integral-human-pose/blob/99647e40ec93dfa4e3b6a1382c935cebb35440da/pytorch_projects/common_pytorch/common_loss/integral.py#L28
def softmax_integral_tensor(preds, num_joints, hm_width, hm_height, hm_depth=None):
# global soft max
preds = preds.reshape((preds.shape[0], num_joints, -1))
preds = F.softmax(preds, 2)
output_3d = False if hm_depth is None else True
# integrate heatmap into joint location
if output_3d:
x, y, z = generate_3d_integral_preds_tensor(
preds, num_joints, hm_width, hm_height, hm_depth
)
# x = x / float(hm_width) - 0.5
# y = y / float(hm_height) - 0.5
# z = z / float(hm_depth) - 0.5
preds = torch.cat((x, y, z), dim=2)
# preds = preds.reshape((preds.shape[0], num_joints * 3))
else:
x, y, _ = generate_3d_integral_preds_tensor(
preds, num_joints, hm_width, hm_height, z_dim=None
)
# x = x / float(hm_width) - 0.5
# y = y / float(hm_height) - 0.5
preds = torch.cat((x, y), dim=2)
# preds = preds.reshape((preds.shape[0], num_joints * 2))
return preds