Yuliang commited on
Commit
8cf0096
·
1 Parent(s): ddda3eb

fix bug of avatarizer; add "-novis" mode

Browse files
Files changed (4) hide show
  1. README.md +5 -2
  2. apps/avatarizer.py +6 -6
  3. apps/infer.py +46 -37
  4. lib/dataset/mesh_util.py +7 -5
README.md CHANGED
@@ -86,9 +86,12 @@ ECON is designed for "Human digitization from a color image", which combines the
86
  ## Demo
87
 
88
  ```bash
89
- # For single-person image-based reconstruction
90
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
91
 
 
 
 
92
  # For multi-person image-based reconstruction (see config/econ.yaml)
93
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
94
 
@@ -105,7 +108,7 @@ python -m apps.avatarizer -n {filename}
105
 
106
  - `use_ifnet: False`
107
  - True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality, **~2min / img**)
108
- - False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed, **~1.5min / img**)
109
  - `use_smpl: ["hand", "face"]`
110
  - [ ]: don't use either hands or face parts from SMPL-X
111
  - ["hand"]: only use the **visible** hands from SMPL-X
 
86
  ## Demo
87
 
88
  ```bash
89
+ # For single-person image-based reconstruction (w/ all visualization steps, 1.8min)
90
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
91
 
92
+ # For single-person image-based reconstruction (w/o any visualization steps, 1.5min)
93
+ python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -novis
94
+
95
  # For multi-person image-based reconstruction (see config/econ.yaml)
96
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
97
 
 
108
 
109
  - `use_ifnet: False`
110
  - True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality, **~2min / img**)
111
+ - False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed, **~1.8min / img**)
112
  - `use_smpl: ["hand", "face"]`
113
  - [ ]: don't use either hands or face parts from SMPL-X
114
  - ["hand"]: only use the **visible** hands from SMPL-X
apps/avatarizer.py CHANGED
@@ -146,7 +146,7 @@ if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.
146
  smpl_hand.update_faces(smplx_container.mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1))
147
  smpl_hand.remove_unreferenced_vertices()
148
  econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
149
- econ_da = poisson(econ_da, f"{prefix}_econ_da.obj")
150
  else:
151
  econ_da = trimesh.load(f"{prefix}_econ_da.obj")
152
  smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)
@@ -156,16 +156,16 @@ dist, idx = smpl_tree.query(econ_da.vertices, k=5)
156
  knn_weights = np.exp(-dist**2)
157
  knn_weights /= knn_weights.sum(axis=1, keepdims=True)
158
 
159
- econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(axis=-1)
160
- econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(axis=-1).T
161
 
162
  num_posedirs = smpl_model.posedirs.shape[0]
163
  econ_posedirs = (
164
  smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None]
165
- ).sum(axis=-2).view(num_posedirs, -1).float()
166
 
167
- econ_J_regressor /= econ_J_regressor.sum(axis=1, keepdims=True)
168
- econ_lbs_weights /= econ_lbs_weights.sum(axis=1, keepdims=True)
169
 
170
  # re-compute da-pose rot_mat for ECON
171
  rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
 
146
  smpl_hand.update_faces(smplx_container.mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1))
147
  smpl_hand.remove_unreferenced_vertices()
148
  econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
149
+ econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, decimation=False)
150
  else:
151
  econ_da = trimesh.load(f"{prefix}_econ_da.obj")
152
  smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)
 
156
  knn_weights = np.exp(-dist**2)
157
  knn_weights /= knn_weights.sum(axis=1, keepdims=True)
158
 
159
+ econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(dim=-1)
160
+ econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(dim=-1).T
161
 
162
  num_posedirs = smpl_model.posedirs.shape[0]
163
  econ_posedirs = (
164
  smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None]
165
+ ).sum(dim=-2).view(num_posedirs, -1).float()
166
 
167
+ econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10)
168
+ econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True)
169
 
170
  # re-compute da-pose rot_mat for ECON
171
  rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
apps/infer.py CHANGED
@@ -54,12 +54,12 @@ if __name__ == "__main__":
54
  parser.add_argument("-gpu", "--gpu_device", type=int, default=0)
55
  parser.add_argument("-loop_smpl", "--loop_smpl", type=int, default=50)
56
  parser.add_argument("-patience", "--patience", type=int, default=5)
57
- parser.add_argument("-vis_freq", "--vis_freq", type=int, default=1000)
58
- parser.add_argument("-multi", action="store_false")
59
  parser.add_argument("-in_dir", "--in_dir", type=str, default="./examples")
60
  parser.add_argument("-out_dir", "--out_dir", type=str, default="./results")
61
  parser.add_argument("-seg_dir", "--seg_dir", type=str, default=None)
62
  parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml")
 
 
63
 
64
  args = parser.parse_args()
65
 
@@ -319,8 +319,8 @@ if __name__ == "__main__":
319
  pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
320
  loop_smpl.set_description(pbar_desc)
321
 
322
- # save intermediate results / vis_freq and final_step
323
- if (i % args.vis_freq == 0) or (i == args.loop_smpl - 1):
324
 
325
  per_loop_lst.extend(
326
  [
@@ -348,26 +348,32 @@ if __name__ == "__main__":
348
 
349
  in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device)
350
  in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]]
351
- per_data_lst[-1].save(osp.join(args.out_dir, cfg.name, f"png/{data['name']}_smpl.png"))
352
-
353
- img_crop_path = osp.join(args.out_dir, cfg.name, "png", f"{data['name']}_crop.png")
354
- torchvision.utils.save_image(
355
- torch.cat(
356
- [
357
- data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
358
- (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
359
- ],
360
- dim=3
361
- ), img_crop_path
362
- )
363
 
364
- rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
365
- rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data)
 
 
366
 
367
- img_overlap_path = osp.join(args.out_dir, cfg.name, f"png/{data['name']}_overlap.png")
368
- torchvision.utils.save_image(
369
- torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255., img_overlap_path
370
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
 
372
  smpl_obj_lst = []
373
 
@@ -618,12 +624,13 @@ if __name__ == "__main__":
618
  final_mesh = sum(full_lst)
619
  final_mesh.export(final_path)
620
 
621
- dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
622
- rotate_recon_lst = dataset.render.get_image(cam_type="four")
623
- per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst)
 
624
 
625
  if cfg.bni.texture_src == 'image':
626
-
627
  # coloring the final mesh (front: RGB pixels, back: normal colors)
628
  final_colors = query_color(
629
  torch.tensor(final_mesh.vertices).float(),
@@ -633,22 +640,24 @@ if __name__ == "__main__":
633
  )
634
  final_mesh.visual.vertex_colors = final_colors
635
  final_mesh.export(final_path)
636
-
637
  elif cfg.bni.texture_src == 'SD':
638
-
639
  # !TODO: add texture from Stable Diffusion
640
  pass
641
 
642
- # for video rendering
643
- in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float())
644
- in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long())
645
-
646
- if len(per_loop_lst) > 0:
647
 
648
  per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth"))
649
  per_data_lst[-1].save(osp.join(args.out_dir, cfg.name, f"png/{data['name']}_cloth.png"))
650
 
651
- os.makedirs(osp.join(args.out_dir, cfg.name, "vid"), exist_ok=True)
652
- in_tensor["uncrop_param"] = data["uncrop_param"]
653
- in_tensor["img_raw"] = data["img_raw"]
654
- torch.save(in_tensor, osp.join(args.out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt"))
 
 
 
 
 
 
 
54
  parser.add_argument("-gpu", "--gpu_device", type=int, default=0)
55
  parser.add_argument("-loop_smpl", "--loop_smpl", type=int, default=50)
56
  parser.add_argument("-patience", "--patience", type=int, default=5)
 
 
57
  parser.add_argument("-in_dir", "--in_dir", type=str, default="./examples")
58
  parser.add_argument("-out_dir", "--out_dir", type=str, default="./results")
59
  parser.add_argument("-seg_dir", "--seg_dir", type=str, default=None)
60
  parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml")
61
+ parser.add_argument("-multi", action="store_false")
62
+ parser.add_argument("-novis", action="store_true")
63
 
64
  args = parser.parse_args()
65
 
 
319
  pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
320
  loop_smpl.set_description(pbar_desc)
321
 
322
+ # save intermediate results
323
+ if (i == args.loop_smpl - 1) and (not args.novis):
324
 
325
  per_loop_lst.extend(
326
  [
 
348
 
349
  in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device)
350
  in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]]
 
 
 
 
 
 
 
 
 
 
 
 
351
 
352
+ if not args.novis:
353
+ per_data_lst[-1].save(
354
+ osp.join(args.out_dir, cfg.name, f"png/{data['name']}_smpl.png")
355
+ )
356
 
357
+ if not args.novis:
358
+ img_crop_path = osp.join(args.out_dir, cfg.name, "png", f"{data['name']}_crop.png")
359
+ torchvision.utils.save_image(
360
+ torch.cat(
361
+ [
362
+ data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
363
+ (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
364
+ ],
365
+ dim=3
366
+ ), img_crop_path
367
+ )
368
+
369
+ rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
370
+ rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data)
371
+
372
+ img_overlap_path = osp.join(args.out_dir, cfg.name, f"png/{data['name']}_overlap.png")
373
+ torchvision.utils.save_image(
374
+ torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255.,
375
+ img_overlap_path
376
+ )
377
 
378
  smpl_obj_lst = []
379
 
 
624
  final_mesh = sum(full_lst)
625
  final_mesh.export(final_path)
626
 
627
+ if not args.novis:
628
+ dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
629
+ rotate_recon_lst = dataset.render.get_image(cam_type="four")
630
+ per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst)
631
 
632
  if cfg.bni.texture_src == 'image':
633
+
634
  # coloring the final mesh (front: RGB pixels, back: normal colors)
635
  final_colors = query_color(
636
  torch.tensor(final_mesh.vertices).float(),
 
640
  )
641
  final_mesh.visual.vertex_colors = final_colors
642
  final_mesh.export(final_path)
643
+
644
  elif cfg.bni.texture_src == 'SD':
645
+
646
  # !TODO: add texture from Stable Diffusion
647
  pass
648
 
649
+ if len(per_loop_lst) > 0 and (not args.novis):
 
 
 
 
650
 
651
  per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth"))
652
  per_data_lst[-1].save(osp.join(args.out_dir, cfg.name, f"png/{data['name']}_cloth.png"))
653
 
654
+ # for video rendering
655
+ in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float())
656
+ in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long())
657
+
658
+ os.makedirs(osp.join(args.out_dir, cfg.name, "vid"), exist_ok=True)
659
+ in_tensor["uncrop_param"] = data["uncrop_param"]
660
+ in_tensor["img_raw"] = data["img_raw"]
661
+ torch.save(
662
+ in_tensor, osp.join(args.out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt")
663
+ )
lib/dataset/mesh_util.py CHANGED
@@ -384,7 +384,7 @@ def remesh_laplacian(mesh, obj_path):
384
  return mesh
385
 
386
 
387
- def poisson(mesh, obj_path, depth=10):
388
 
389
  pcd_path = obj_path[:-4] + ".ply"
390
  assert (mesh.vertex_normals.shape[1] == 3)
@@ -400,10 +400,12 @@ def poisson(mesh, obj_path, depth=10):
400
  largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
401
  largest_mesh.export(obj_path)
402
 
403
- # mesh decimation for faster rendering
404
- low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)
405
-
406
- return low_res_mesh
 
 
407
 
408
 
409
  # Losses to smooth / regularize the mesh shape
 
384
  return mesh
385
 
386
 
387
+ def poisson(mesh, obj_path, depth=10, decimation=True):
388
 
389
  pcd_path = obj_path[:-4] + ".ply"
390
  assert (mesh.vertex_normals.shape[1] == 3)
 
400
  largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
401
  largest_mesh.export(obj_path)
402
 
403
+ if decimation:
404
+ # mesh decimation for faster rendering
405
+ low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)
406
+ return low_res_mesh
407
+ else:
408
+ return largest_mesh
409
 
410
 
411
  # Losses to smooth / regularize the mesh shape