""" The code is based on https://github.com/apple/ml-gsn/ with adaption. """ import torch import torch.nn as nn from torch import autograd import torch.nn.functional as F from lib.net.Discriminator import StyleDiscriminator def hinge_loss(fake_pred, real_pred, mode): if mode == 'd': # Discriminator update d_loss_fake = torch.mean(F.relu(1.0 + fake_pred)) d_loss_real = torch.mean(F.relu(1.0 - real_pred)) d_loss = d_loss_fake + d_loss_real elif mode == 'g': # Generator update d_loss = -torch.mean(fake_pred) return d_loss def logistic_loss(fake_pred, real_pred, mode): if mode == 'd': # Discriminator update d_loss_fake = torch.mean(F.softplus(fake_pred)) d_loss_real = torch.mean(F.softplus(-real_pred)) d_loss = d_loss_fake + d_loss_real elif mode == 'g': # Generator update d_loss = torch.mean(F.softplus(-fake_pred)) return d_loss def r1_loss(real_pred, real_img): (grad_real, ) = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True) grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean() return grad_penalty class GANLoss(nn.Module): def __init__( self, opt, disc_loss='logistic', ): super().__init__() self.opt = opt.gan input_dim = 3 self.discriminator = StyleDiscriminator(input_dim, self.opt.img_res) if disc_loss == 'hinge': self.disc_loss = hinge_loss elif disc_loss == 'logistic': self.disc_loss = logistic_loss def forward(self, input): disc_in_real = input['norm_real'] disc_in_fake = input['norm_fake'] logits_real = self.discriminator(disc_in_real) logits_fake = self.discriminator(disc_in_fake) disc_loss = self.disc_loss(fake_pred=logits_fake, real_pred=logits_real, mode='d') log = { "disc_loss": disc_loss.detach(), "logits_real": logits_real.mean().detach(), "logits_fake": logits_fake.mean().detach(), } return disc_loss * self.opt.lambda_gan, log