# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from typing import NewType, Union, Optional from dataclasses import dataclass, asdict, fields import numpy as np import torch Tensor = NewType("Tensor", torch.Tensor) Array = NewType("Array", np.ndarray) @dataclass class ModelOutput: vertices: Optional[Tensor] = None joints: Optional[Tensor] = None full_pose: Optional[Tensor] = None global_orient: Optional[Tensor] = None transl: Optional[Tensor] = None def __getitem__(self, key): return getattr(self, key) def get(self, key, default=None): return getattr(self, key, default) def __iter__(self): return self.keys() def keys(self): keys = [t.name for t in fields(self)] return iter(keys) def values(self): values = [getattr(self, t.name) for t in fields(self)] return iter(values) def items(self): data = [(t.name, getattr(self, t.name)) for t in fields(self)] return iter(data) @dataclass class SMPLOutput(ModelOutput): betas: Optional[Tensor] = None body_pose: Optional[Tensor] = None @dataclass class SMPLHOutput(SMPLOutput): left_hand_pose: Optional[Tensor] = None right_hand_pose: Optional[Tensor] = None transl: Optional[Tensor] = None @dataclass class SMPLXOutput(SMPLHOutput): expression: Optional[Tensor] = None jaw_pose: Optional[Tensor] = None joint_transformation: Optional[Tensor] = None vertex_transformation: Optional[Tensor] = None @dataclass class MANOOutput(ModelOutput): betas: Optional[Tensor] = None hand_pose: Optional[Tensor] = None @dataclass class FLAMEOutput(ModelOutput): betas: Optional[Tensor] = None expression: Optional[Tensor] = None jaw_pose: Optional[Tensor] = None neck_pose: Optional[Tensor] = None def find_joint_kin_chain(joint_id, kinematic_tree): kin_chain = [] curr_idx = joint_id while curr_idx != -1: kin_chain.append(curr_idx) curr_idx = kinematic_tree[curr_idx] return kin_chain def to_tensor(array: Union[Array, Tensor], dtype=torch.float32) -> Tensor: if torch.is_tensor(array): return array else: return torch.tensor(array, dtype=dtype) class Struct(object): def __init__(self, **kwargs): for key, val in kwargs.items(): setattr(self, key, val) def to_np(array, dtype=np.float32): if "scipy.sparse" in str(type(array)): array = array.todense() return np.array(array, dtype=dtype) def rot_mat_to_euler(rot_mats): # Calculates rotation matrix to euler angles # Careful for extreme cases of eular angles like [0.0, pi, 0.0] sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) return torch.atan2(-rot_mats[:, 2, 0], sy)