import torch import trimesh import cv2, os from PIL import Image import os.path as osp import cupy as cp import numpy as np from cupyx.scipy.sparse import csr_matrix, vstack, hstack, spdiags, diags, coo_matrix from cupyx.scipy.sparse.linalg import cg from tqdm.auto import tqdm from lib.dataset.mesh_util import clean_floats def find_max_list(lst): list_len = [len(i) for i in lst] max_id = np.argmax(np.array(list_len)) return lst[max_id] def interpolate_pts(pts, diff_ids): pts_extend = np.around((pts[diff_ids] + pts[diff_ids - 1]) * 0.5).astype(np.int32) pts = np.insert(pts, diff_ids, pts_extend, axis=0) return pts def align_pts(pts1, pts2): diff_num = abs(len(pts1) - len(pts2)) diff_ids = np.sort(np.random.choice(min(len(pts2), len(pts1)), diff_num, replace=True)) if len(pts1) > len(pts2): pts2 = interpolate_pts(pts2, diff_ids) elif len(pts2) > len(pts1): pts1 = interpolate_pts(pts1, diff_ids) else: pass return pts1, pts2 def repeat_pts(pts1, pts2): coverage_mask = ((pts1[:, None, :] == pts2[None, :, :]).sum(axis=2) == 2.).any(axis=1) return coverage_mask def find_contour(mask, method='all'): if method == 'all': contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) else: contours, _ = cv2.findContours( mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) contour_cloth = np.array(find_max_list(contours))[:, 0, :] return contour_cloth def mean_value_cordinates(inner_pts, contour_pts): body_edges_a = np.sqrt(((inner_pts[:, None] - contour_pts[None, :])**2).sum(axis=2)) body_edges_c = np.roll(body_edges_a, shift=-1, axis=1) body_edges_b = np.sqrt(((contour_pts - np.roll(contour_pts, shift=-1, axis=0))**2).sum(axis=1)) body_edges = np.concatenate( [ body_edges_a[..., None], body_edges_c[..., None], np.repeat(body_edges_b[None, :, None], axis=0, repeats=len(inner_pts)) ], axis=-1 ) body_cos = (body_edges[:, :, 0]**2 + body_edges[:, :, 1]**2 - body_edges[:, :, 2]**2) / (2 * body_edges[:, :, 0] * body_edges[:, :, 1]) body_tan_half = np.sqrt( (1. - np.clip(body_cos, a_max=1., a_min=-1.)) / np.clip(1. + body_cos, 1e-6, 2.) ) w = (body_tan_half + np.roll(body_tan_half, shift=1, axis=1)) / body_edges_a w /= w.sum(axis=1, keepdims=True) return w def get_dst_mat(contour_body, contour_cloth): dst_mat = ((contour_body[:, None, :] - contour_cloth[None, :, :])**2).sum(axis=2) return dst_mat def dispCorres(img_size, contour1, contour2, phi, dir_path): contour1 = contour1[None, :, None, :].astype(np.int32) contour2 = contour2[None, :, None, :].astype(np.int32) disp = np.zeros((img_size, img_size, 3), dtype=np.uint8) cv2.drawContours(disp, contour1, -1, (0, 255, 0), 1) # green cv2.drawContours(disp, contour2, -1, (255, 0, 0), 1) # blue for i in range(contour1.shape[1]): # do not show all the points when display # cv2.circle(disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), 1, # (255, 0, 0), -1) corresPoint = contour2[0, phi[i], 0] # cv2.circle(disp, (corresPoint[0], corresPoint[1]), 1, (0, 255, 0), -1) cv2.line( disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), (corresPoint[0], corresPoint[1]), (255, 255, 255), 1 ) cv2.imwrite(osp.join(dir_path, "corres.png"), disp) def remove_stretched_faces(verts, faces): mesh = trimesh.Trimesh(verts, faces) camera_ray = np.array([0.0, 0.0, 1.0]) faces_cam_angles = np.dot(mesh.face_normals, camera_ray) # cos(90-20)=0.34 cos(90-10)=0.17, 10~20 degree faces_mask = np.abs(faces_cam_angles) > 2e-1 mesh.update_faces(faces_mask) mesh.remove_unreferenced_vertices() return mesh.vertices, mesh.faces def tensor2arr(t, mask=False): if not mask: return t.squeeze(0).permute(1, 2, 0).detach().cpu().numpy() else: mask = t.squeeze(0).abs().sum(dim=0, keepdim=True) return (mask != mask[:, 0, 0]).float().squeeze(0).detach().cpu().numpy() def arr2png(t): return ((t + 1.0) * 0.5 * 255.0).astype(np.uint8) def depth2arr(t): return t.float().detach().cpu().numpy() def depth2png(t): t_copy = t.copy() t_bg = t_copy[0, 0] valid_region = np.logical_and(t > -1.0, t != t_bg) t_copy[valid_region] -= t_copy[valid_region].min() t_copy[valid_region] /= t_copy[valid_region].max() t_copy[valid_region] = (1. - t_copy[valid_region]) * 255.0 t_copy[~valid_region] = 0.0 return t_copy[..., None].astype(np.uint8) def verts_transform(t, depth_scale): t_copy = t.clone() t_copy *= depth_scale * 0.5 t_copy += depth_scale * 0.5 t_copy = t_copy[:, [1, 0, 2]] * torch.Tensor([2.0, 2.0, -2.0]) + torch.Tensor( [0.0, 0.0, depth_scale] ) return t_copy def verts_inverse_transform(t, depth_scale): t_copy = t.clone() t_copy -= torch.tensor([0.0, 0.0, depth_scale]) t_copy /= torch.tensor([2.0, 2.0, -2.0]) t_copy -= depth_scale * 0.5 t_copy /= depth_scale * 0.5 t_copy = t_copy[:, [1, 0, 2]] return t_copy def depth_inverse_transform(t, depth_scale): t_copy = t.clone() t_copy -= torch.tensor(depth_scale) t_copy /= torch.tensor(-2.0) t_copy -= depth_scale * 0.5 t_copy /= depth_scale * 0.5 return t_copy # BNI related def move_left(mask): return cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:] def move_right(mask): return cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1] def move_top(mask): return cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :] def move_bottom(mask): return cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :] def move_top_left(mask): return cp.pad(mask, ((0, 1), (0, 1)), "constant", constant_values=0)[1:, 1:] def move_top_right(mask): return cp.pad(mask, ((0, 1), (1, 0)), "constant", constant_values=0)[1:, :-1] def move_bottom_left(mask): return cp.pad(mask, ((1, 0), (0, 1)), "constant", constant_values=0)[:-1, 1:] def move_bottom_right(mask): return cp.pad(mask, ((1, 0), (1, 0)), "constant", constant_values=0)[:-1, :-1] def generate_dx_dy_new(mask, nz_horizontal, nz_vertical, step_size=1): # pixel coordinates # ^ vertical positive # | # | # | # o ---> horizontal positive num_pixel = cp.sum(mask) pixel_idx = cp.zeros_like(mask, dtype=int) pixel_idx[mask] = cp.arange(num_pixel) has_left_mask = cp.logical_and(move_right(mask), mask) has_right_mask = cp.logical_and(move_left(mask), mask) has_bottom_mask = cp.logical_and(move_top(mask), mask) has_top_mask = cp.logical_and(move_bottom(mask), mask) nz_left = nz_horizontal[has_left_mask[mask]] nz_right = nz_horizontal[has_right_mask[mask]] nz_top = nz_vertical[has_top_mask[mask]] nz_bottom = nz_vertical[has_bottom_mask[mask]] data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten() indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)]) D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten() indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)]) D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten() indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)]) D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten() indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)]) D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg def generate_dx_dy(mask, nz_horizontal, nz_vertical, step_size=1): # pixel coordinates # ^ vertical positive # | # | # | # o ---> horizontal positive num_pixel = cp.sum(mask) pixel_idx = cp.zeros_like(mask, dtype=int) pixel_idx[mask] = cp.arange(num_pixel) has_left_mask = cp.logical_and(move_right(mask), mask) has_right_mask = cp.logical_and(move_left(mask), mask) has_bottom_mask = cp.logical_and(move_top(mask), mask) has_top_mask = cp.logical_and(move_bottom(mask), mask) nz_left = nz_horizontal[has_left_mask[mask]] nz_right = nz_horizontal[has_right_mask[mask]] nz_top = nz_vertical[has_top_mask[mask]] nz_bottom = nz_vertical[has_bottom_mask[mask]] data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten() indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)]) D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten() indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)]) D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten() indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)]) D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten() indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]), -1).flatten() indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)]) D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel)) return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg def construct_facets_from(mask): idx = cp.zeros_like(mask, dtype=int) idx[mask] = cp.arange(cp.sum(mask)) facet_move_top_mask = move_top(mask) facet_move_left_mask = move_left(mask) facet_move_top_left_mask = move_top_left(mask) facet_top_left_mask = ( facet_move_top_mask * facet_move_left_mask * facet_move_top_left_mask * mask ) facet_top_right_mask = move_right(facet_top_left_mask) facet_bottom_left_mask = move_bottom(facet_top_left_mask) facet_bottom_right_mask = move_bottom_right(facet_top_left_mask) return cp.hstack( ( 4 * cp.ones((cp.sum(facet_top_left_mask).item(), 1)), idx[facet_top_left_mask][:, None], idx[facet_bottom_left_mask][:, None], idx[facet_bottom_right_mask][:, None], idx[facet_top_right_mask][:, None], ) ).astype(int) def map_depth_map_to_point_clouds(depth_map, mask, K=None, step_size=1): # y # | z # | / # |/ # o ---x H, W = mask.shape yy, xx = cp.meshgrid(cp.arange(W), cp.arange(H)) xx = cp.flip(xx, axis=0) if K is None: vertices = cp.zeros((H, W, 3)) vertices[..., 0] = xx * step_size vertices[..., 1] = yy * step_size vertices[..., 2] = depth_map vertices = vertices[mask] else: u = cp.zeros((H, W, 3)) u[..., 0] = xx u[..., 1] = yy u[..., 2] = 1 u = u[mask].T # 3 x m vertices = (cp.linalg.inv(K) @ u).T * depth_map[mask, cp.newaxis] # m x 3 return vertices def sigmoid(x, k=1): return 1 / (1 + cp.exp(-k * x)) def boundary_excluded_mask(mask): top_mask = cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :] bottom_mask = cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :] left_mask = cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1] right_mask = cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:] be_mask = top_mask * bottom_mask * left_mask * right_mask * mask # discard single point top_mask = cp.pad(be_mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :] bottom_mask = cp.pad(be_mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :] left_mask = cp.pad(be_mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1] right_mask = cp.pad(be_mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:] bes_mask = (top_mask + bottom_mask + left_mask + right_mask).astype(bool) be_mask = cp.logical_and(be_mask, bes_mask) return be_mask def create_boundary_matrix(mask): num_pixel = cp.sum(mask) pixel_idx = cp.zeros_like(mask, dtype=int) pixel_idx[mask] = cp.arange(num_pixel) be_mask = boundary_excluded_mask(mask) boundary_mask = cp.logical_xor(be_mask, mask) diag_data_term = boundary_mask[mask].astype(int) B = diags(diag_data_term) num_boundary_pixel = cp.sum(boundary_mask).item() data_term = cp.concatenate((cp.ones(num_boundary_pixel), -cp.ones(num_boundary_pixel))) row_idx = cp.tile(cp.arange(num_boundary_pixel), 2) col_idx = cp.concatenate((pixel_idx[boundary_mask], pixel_idx[boundary_mask] + num_pixel)) B_full = coo_matrix((data_term, (row_idx, col_idx)), shape=(num_boundary_pixel, 2 * num_pixel)) return B, B_full def double_side_bilateral_normal_integration( normal_front, normal_back, normal_mask, depth_front=None, depth_back=None, depth_mask=None, k=2, lambda_normal_back=1, lambda_depth_front=1e-4, lambda_depth_back=1e-2, lambda_boundary_consistency=1, step_size=1, max_iter=150, tol=1e-4, cg_max_iter=5000, cg_tol=1e-3 ): # To avoid confusion, we list the coordinate systems in this code as follows # # pixel coordinates camera coordinates normal coordinates (the main paper's Fig. 1 (a)) # u x y # | | z | # | | / o -- x # | |/ / # o --- v o --- y z # (bottom left) # (o is the optical center; # xy-plane is parallel to the image plane; # +z is the viewing direction.) # # The input normal map should be defined in the normal coordinates. # The camera matrix K should be defined in the camera coordinates. # K = [[fx, 0, cx], # [0, fy, cy], # [0, 0, 1]] num_normals = cp.sum(normal_mask) normal_map_front = cp.asarray(normal_front) normal_map_back = cp.asarray(normal_back) normal_mask = cp.asarray(normal_mask) if depth_mask is not None: depth_map_front = cp.asarray(depth_front) depth_map_back = cp.asarray(depth_back) depth_mask = cp.asarray(depth_mask) # transfer the normal map from the normal coordinates to the camera coordinates nx_front = normal_map_front[normal_mask, 1] ny_front = normal_map_front[normal_mask, 0] nz_front = -normal_map_front[normal_mask, 2] del normal_map_front nx_back = normal_map_back[normal_mask, 1] ny_back = normal_map_back[normal_mask, 0] nz_back = -normal_map_back[normal_mask, 2] del normal_map_back # right, left, top, bottom A3_f, A4_f, A1_f, A2_f = generate_dx_dy( normal_mask, nz_horizontal=nz_front, nz_vertical=nz_front, step_size=step_size ) A3_b, A4_b, A1_b, A2_b = generate_dx_dy( normal_mask, nz_horizontal=nz_back, nz_vertical=nz_back, step_size=step_size ) has_left_mask = cp.logical_and(move_right(normal_mask), normal_mask) has_right_mask = cp.logical_and(move_left(normal_mask), normal_mask) has_bottom_mask = cp.logical_and(move_top(normal_mask), normal_mask) has_top_mask = cp.logical_and(move_bottom(normal_mask), normal_mask) top_boundnary_mask = cp.logical_xor(has_top_mask, normal_mask)[normal_mask] bottom_boundary_mask = cp.logical_xor(has_bottom_mask, normal_mask)[normal_mask] left_boundary_mask = cp.logical_xor(has_left_mask, normal_mask)[normal_mask] right_boudnary_mask = cp.logical_xor(has_right_mask, normal_mask)[normal_mask] A_front_data = vstack((A1_f, A2_f, A3_f, A4_f)) A_front_zero = csr_matrix(A_front_data.shape) A_front = hstack([A_front_data, A_front_zero]) A_back_data = vstack((A1_b, A2_b, A3_b, A4_b)) A_back_zero = csr_matrix(A_back_data.shape) A_back = hstack([A_back_zero, A_back_data]) b_front = cp.concatenate((-nx_front, -nx_front, -ny_front, -ny_front)) b_back = cp.concatenate((-nx_back, -nx_back, -ny_back, -ny_back)) # initialization W_front = spdiags( 0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr" ) W_back = spdiags( 0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr" ) z_front = cp.zeros(num_normals, float) z_back = cp.zeros(num_normals, float) z_combined = cp.concatenate((z_front, z_back)) B, B_full = create_boundary_matrix(normal_mask) B_mat = lambda_boundary_consistency * coo_matrix(B_full.get().T @ B_full.get()) #bug energy_list = [] if depth_mask is not None: depth_mask_flat = depth_mask[normal_mask].astype(bool) # shape: (num_normals,) z_prior_front = depth_map_front[normal_mask] # shape: (num_normals,) z_prior_front[~depth_mask_flat] = 0 z_prior_back = depth_map_back[normal_mask] z_prior_back[~depth_mask_flat] = 0 m = depth_mask[normal_mask].astype(int) M = diags(m) energy = (A_front @ z_combined - b_front).T @ W_front @ (A_front @ z_combined - b_front) + \ lambda_normal_back * (A_back @ z_combined - b_back).T @ W_back @ (A_back @ z_combined - b_back) + \ lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \ lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) + \ lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front) for i in range(max_iter): A_mat_front = A_front_data.T @ W_front @ A_front_data b_vec_front = A_front_data.T @ W_front @ b_front A_mat_back = A_back_data.T @ W_back @ A_back_data b_vec_back = A_back_data.T @ W_back @ b_back if depth_mask is not None: b_vec_front += lambda_depth_front * M @ z_prior_front b_vec_back += lambda_depth_back * M @ z_prior_back A_mat_front += lambda_depth_front * M A_mat_back += lambda_depth_back * M offset_front = cp.mean((z_prior_front - z_combined[:num_normals])[depth_mask_flat]) offset_back = cp.mean((z_prior_back - z_combined[num_normals:])[depth_mask_flat]) z_combined[:num_normals] = z_combined[:num_normals] + offset_front z_combined[num_normals:] = z_combined[num_normals:] + offset_back A_mat_combined = hstack([vstack((A_mat_front, csr_matrix((num_normals, num_normals)))), \ vstack((csr_matrix((num_normals, num_normals)), A_mat_back))]) + B_mat b_vec_combined = cp.concatenate((b_vec_front, b_vec_back)) D = spdiags( 1 / cp.clip(A_mat_combined.diagonal(), 1e-5, None), 0, 2 * num_normals, 2 * num_normals, "csr" ) # Jacob preconditioner z_combined, _ = cg( A_mat_combined, b_vec_combined, M=D, x0=z_combined, maxiter=cg_max_iter, tol=cg_tol ) z_front = z_combined[:num_normals] z_back = z_combined[num_normals:] wu_f = sigmoid((A2_f.dot(z_front))**2 - (A1_f.dot(z_front))**2, k) # top wv_f = sigmoid((A4_f.dot(z_front))**2 - (A3_f.dot(z_front))**2, k) # right wu_f[top_boundnary_mask] = 0.5 wu_f[bottom_boundary_mask] = 0.5 wv_f[left_boundary_mask] = 0.5 wv_f[right_boudnary_mask] = 0.5 W_front = spdiags( cp.concatenate((wu_f, 1 - wu_f, wv_f, 1 - wv_f)), 0, 4 * num_normals, 4 * num_normals, format="csr" ) wu_b = sigmoid((A2_b.dot(z_back))**2 - (A1_b.dot(z_back))**2, k) # top wv_b = sigmoid((A4_b.dot(z_back))**2 - (A3_b.dot(z_back))**2, k) # right wu_b[top_boundnary_mask] = 0.5 wu_b[bottom_boundary_mask] = 0.5 wv_b[left_boundary_mask] = 0.5 wv_b[right_boudnary_mask] = 0.5 W_back = spdiags( cp.concatenate((wu_b, 1 - wu_b, wv_b, 1 - wv_b)), 0, 4 * num_normals, 4 * num_normals, format="csr" ) energy_old = energy energy = (A_front_data @ z_front - b_front).T @ W_front @ (A_front_data @ z_front - b_front) + \ lambda_normal_back * (A_back_data @ z_back - b_back).T @ W_back @ (A_back_data @ z_back - b_back) + \ lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \ lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) +\ lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front) energy_list.append(energy) relative_energy = cp.abs(energy - energy_old) / energy_old # print(f"step {i + 1}/{max_iter} energy: {energy:.3e}" # f" relative energy: {relative_energy:.3e}") if relative_energy < tol: break # del A1, A2, A3, A4, nx, ny depth_map_front_est = cp.ones_like(normal_mask, float) * cp.nan depth_map_front_est[normal_mask] = z_front depth_map_back_est = cp.ones_like(normal_mask, float) * cp.nan depth_map_back_est[normal_mask] = z_back # manually cut the intersection normal_mask[depth_map_front_est >= depth_map_back_est] = False depth_map_front_est[~normal_mask] = cp.nan depth_map_back_est[~normal_mask] = cp.nan vertices_front = cp.asnumpy( map_depth_map_to_point_clouds( depth_map_front_est, normal_mask, K=None, step_size=step_size ) ) vertices_back = cp.asnumpy( map_depth_map_to_point_clouds(depth_map_back_est, normal_mask, K=None, step_size=step_size) ) facets_back = cp.asnumpy(construct_facets_from(normal_mask)) faces_back = np.concatenate((facets_back[:, [1, 4, 3]], facets_back[:, [1, 3, 2]]), axis=0) faces_front = np.concatenate((facets_back[:, [1, 2, 3]], facets_back[:, [1, 3, 4]]), axis=0) vertices_front, faces_front = remove_stretched_faces(vertices_front, faces_front) vertices_back, faces_back = remove_stretched_faces(vertices_back, faces_back) front_mesh = clean_floats(trimesh.Trimesh(vertices_front, faces_front)) back_mesh = clean_floats(trimesh.Trimesh(vertices_back, faces_back)) result = { "F_verts": torch.as_tensor(front_mesh.vertices).float(), "F_faces": torch.as_tensor(front_mesh.faces).long(), "B_verts": torch.as_tensor(back_mesh.vertices).float(), "B_faces": torch.as_tensor(back_mesh.faces).long(), "F_depth": torch.as_tensor(depth_map_front_est).float(), "B_depth": torch.as_tensor(depth_map_back_est).float() } return result def save_normal_tensor(in_tensor, idx, png_path, thickness=0.0): os.makedirs(os.path.dirname(png_path), exist_ok=True) normal_F_arr = tensor2arr(in_tensor["normal_F"][idx:idx + 1]) normal_B_arr = tensor2arr(in_tensor["normal_B"][idx:idx + 1]) mask_normal_arr = tensor2arr(in_tensor["image"][idx:idx + 1], True) depth_F_arr = depth2arr(in_tensor["depth_F"][idx]) depth_B_arr = depth2arr(in_tensor["depth_B"][idx]) BNI_dict = {} # clothed human BNI_dict["normal_F"] = normal_F_arr BNI_dict["normal_B"] = normal_B_arr BNI_dict["mask"] = mask_normal_arr > 0. BNI_dict["depth_F"] = depth_F_arr - 100. - thickness BNI_dict["depth_B"] = 100. - depth_B_arr + thickness BNI_dict["depth_mask"] = depth_F_arr != -1.0 np.save(png_path + ".npy", BNI_dict, allow_pickle=True) return BNI_dict