import cv2 import mediapipe as mp import torch import numpy as np import torch.nn.functional as F from PIL import Image from lib.pymafx.core import constants from rembg import remove from rembg.session_factory import new_session from torchvision import transforms from kornia.geometry.transform import get_affine_matrix2d, warp_affine def transform_to_tensor(res, mean=None, std=None, is_tensor=False): all_ops = [] if res is not None: all_ops.append(transforms.Resize(size=res)) if not is_tensor: all_ops.append(transforms.ToTensor()) if mean is not None and std is not None: all_ops.append(transforms.Normalize(mean=mean, std=std)) return transforms.Compose(all_ops) def get_affine_matrix_wh(w1, h1, w2, h2): transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0) center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0) scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0) M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.])) return M def get_affine_matrix_box(boxes, w2, h2): # boxes [left, top, right, bottom] width = boxes[:, 2] - boxes[:, 0] #(N,) height = boxes[:, 3] - boxes[:, 1] #(N,) center = torch.tensor( [(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0] ).T #(N,2) scale = torch.min(torch.tensor([w2 / width, h2 / height]), dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2) transl = torch.tensor([w2 / 2.0 - center[:, 0], h2 / 2.0 - center[:, 1]]).unsqueeze(0) #(N,2) M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.])) return M def load_img(img_file): img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) # considering 16-bit image if img.dtype == np.uint16: img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not img_file.endswith("png"): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2] def get_keypoints(image): def collect_xyv(x, body=True): lmk = x.landmark all_lmks = [] for i in range(len(lmk)): visibility = lmk[i].visibility if body else 1.0 all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) return torch.stack(all_lmks).view(-1, 4) mp_holistic = mp.solutions.holistic with mp_holistic.Holistic( static_image_mode=True, model_complexity=2, ) as holistic: results = holistic.process(image) fake_kps = torch.zeros(33, 4) result = {} result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps result["lhand"] = collect_xyv( results.left_hand_landmarks, False ) if results.left_hand_landmarks else fake_kps result["rhand"] = collect_xyv( results.right_hand_landmarks, False ) if results.right_hand_landmarks else fake_kps result["face"] = collect_xyv( results.face_landmarks, False ) if results.face_landmarks else fake_kps return result def get_pymafx(image, landmarks): # image [3,512,512] item = { 'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0] } for part in ['lhand', 'rhand', 'face']: kp2d = landmarks[part] kp2d_valid = kp2d[kp2d[:, 3] > 0.] if len(kp2d_valid) > 0: bbox = [ min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1]) ] center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 # handle invalid part keypoints if len(kp2d_valid) < 1 or scale_part < 0.01: center_part = [0, 0] scale_part = 0.5 kp2d[:, 3] = 0 center_part = torch.tensor(center_part).float() theta_part = torch.zeros(1, 2, 3) theta_part[:, 0, 0] = scale_part theta_part[:, 1, 1] = scale_part theta_part[:, :, -1] = center_part grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() item[f'img_{part}'] = img_part theta_i_inv = torch.zeros_like(theta_part) theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) item[f'{part}_theta_inv'] = theta_i_inv[0] return item def remove_floats(mask): # 1. find all the contours # 2. fillPoly "True" for the largest one # 3. fillPoly "False" for its childrens new_mask = np.zeros(mask.shape) cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) body_cnt = cnts[cnt_index[0]] childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] childs_cnt = [cnts[idx] for idx in childs_cnt_idx] cv2.fillPoly(new_mask, [body_cnt], 1) cv2.fillPoly(new_mask, childs_cnt, 0) return new_mask def process_image(img_file, hps_type, single, input_res, detector): img_raw, (in_height, in_width) = load_img(img_file) tgt_res = input_res * 2 M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res) img_square = warp_affine( img_raw, M_square[:, :2], (tgt_res, ) * 2, mode='bilinear', padding_mode='zeros', align_corners=True ) # detection for bbox predictions = detector(img_square / 255.)[0] if single: top_score = predictions["scores"][predictions["labels"] == 1].max() human_ids = torch.where(predictions["scores"] == top_score)[0] else: human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1) boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() M_crop = get_affine_matrix_box(boxes, input_res, input_res) img_icon_lst = [] img_crop_lst = [] img_hps_lst = [] img_mask_lst = [] landmark_lst = [] hands_visibility_lst = [] img_pymafx_lst = [] uncrop_param = { "ori_shape": [in_height, in_width], "box_shape": [input_res, input_res], "square_shape": [tgt_res, tgt_res], "M_square": M_square, "M_crop": M_crop } for idx in range(len(boxes)): # mask out the pixels of others if len(masks) > 1: mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) else: mask_detection = masks[0] * 0. img_square_rgba = torch.cat( [img_square.squeeze(0).permute(1, 2, 0), torch.tensor(mask_detection < 0.4) * 255], dim=2 ) img_crop = warp_affine( img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2), M_crop[idx:idx + 1, :2], (input_res, ) * 2, mode='bilinear', padding_mode='zeros', align_corners=True ).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) # get accurate person segmentation mask img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) img_mask = remove_floats(img_rembg[:, :, [3]]) mean_icon = std_icon = (0.5, 0.5, 0.5) img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) img_icon = transform_to_tensor(512, mean_icon, std_icon)( Image.fromarray(img_np) ) * torch.tensor(img_mask).permute(2, 0, 1) img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)) landmarks = get_keypoints(img_np) # get hands visibility hands_visibility = [True, True] if landmarks['lhand'][:, -1].mean() == 0.: hands_visibility[0] = False if landmarks['rhand'][:, -1].mean() == 0.: hands_visibility[1] = False hands_visibility_lst.append(hands_visibility) if hps_type == 'pymafx': img_pymafx_lst.append( get_pymafx( transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks ) ) img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) img_icon_lst.append(img_icon) img_hps_lst.append(img_hps) img_mask_lst.append(torch.tensor(img_mask[..., 0])) landmark_lst.append(landmarks['body']) # required image tensors / arrays # img_icon (tensor): (-1, 1), [3,512,512] # img_hps (tensor): (-2.11, 2.44), [3,224,224] # img_np (array): (0, 255), [512,512,3] # img_rembg (array): (0, 255), [512,512,4] # img_mask (array): (0, 1), [512,512,1] # img_crop (array): (0, 255), [512,512,4] return_dict = { "img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res] "img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res] "img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res] "img_raw": img_raw, #[1, 3, H, W] "img_mask": torch.stack(img_mask_lst).float(), #[N, res, res] "uncrop_param": uncrop_param, "landmark": torch.stack(landmark_lst), #[N, 33, 4] "hands_visibility": hands_visibility_lst, } img_pymafx = {} if len(img_pymafx_lst) > 0: for idx in range(len(img_pymafx_lst)): for key in img_pymafx_lst[idx].keys(): if key not in img_pymafx.keys(): img_pymafx[key] = [img_pymafx_lst[idx][key]] else: img_pymafx[key] += [img_pymafx_lst[idx][key]] for key in img_pymafx.keys(): img_pymafx[key] = torch.stack(img_pymafx[key]).float() return_dict.update({"img_pymafx": img_pymafx}) return return_dict def blend_rgb_norm(norms, data): # norms [N, 3, res, res] masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1) norm_mask = F.interpolate( torch.cat([norms, masks], dim=1).detach(), size=data["uncrop_param"]["box_shape"], mode="bilinear", align_corners=False ) final = data["img_raw"].type_as(norm_mask) for idx in range(len(norms)): norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0 mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1) norm_ori = unwrap(norm_pred, data["uncrop_param"], idx) mask_ori = unwrap(mask_pred, data["uncrop_param"], idx) final = final * (1.0 - mask_ori) + norm_ori * mask_ori return final.detach().cpu() def unwrap(image, uncrop_param, idx): device = image.device img_square = warp_affine( image, torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device), uncrop_param["square_shape"], mode='bilinear', padding_mode='zeros', align_corners=True ) img_ori = warp_affine( img_square, torch.inverse(uncrop_param["M_square"])[:, :2].to(device), uncrop_param["ori_shape"], mode='bilinear', padding_mode='zeros', align_corners=True ) return img_ori