# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import numpy as np import pickle import torch import os class SMPLModel: def __init__(self, model_path, age): """ SMPL model. Parameter: --------- model_path: Path to the SMPL model parameters, pre-processed by `preprocess.py`. """ with open(model_path, "rb") as f: params = pickle.load(f, encoding="latin1") self.J_regressor = params["J_regressor"] self.weights = np.asarray(params["weights"]) self.posedirs = np.asarray(params["posedirs"]) self.v_template = np.asarray(params["v_template"]) self.shapedirs = np.asarray(params["shapedirs"]) self.faces = np.asarray(params["f"]) self.kintree_table = np.asarray(params["kintree_table"]) self.pose_shape = [24, 3] self.beta_shape = [10] self.trans_shape = [3] if age == "kid": v_template_smil = np.load( os.path.join(os.path.dirname(model_path), "smpl/smpl_kid_template.npy") ) v_template_smil -= np.mean(v_template_smil, axis=0) v_template_diff = np.expand_dims(v_template_smil - self.v_template, axis=2) self.shapedirs = np.concatenate( (self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff), axis=2 ) self.beta_shape[0] += 1 id_to_col = {self.kintree_table[1, i]: i for i in range(self.kintree_table.shape[1])} self.parent = { i: id_to_col[self.kintree_table[0, i]] for i in range(1, self.kintree_table.shape[1]) } self.pose = np.zeros(self.pose_shape) self.beta = np.zeros(self.beta_shape) self.trans = np.zeros(self.trans_shape) self.verts = None self.J = None self.R = None self.G = None self.update() def set_params(self, pose=None, beta=None, trans=None): """ Set pose, shape, and/or translation parameters of SMPL model. Verices of the model will be updated and returned. Prameters: --------- pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation relative to parent joint. For root joint it's global orientation. Represented in a axis-angle format. beta: Parameter for model shape. A vector of shape [10]. Coefficients for PCA component. Only 10 components were released by MPI. trans: Global translation of shape [3]. Return: ------ Updated vertices. """ if pose is not None: self.pose = pose if beta is not None: self.beta = beta if trans is not None: self.trans = trans self.update() return self.verts def update(self): """ Called automatically when parameters are updated. """ # how beta affect body shape v_shaped = self.shapedirs.dot(self.beta) + self.v_template # joints location self.J = self.J_regressor.dot(v_shaped) pose_cube = self.pose.reshape((-1, 1, 3)) # rotation matrix for each joint self.R = self.rodrigues(pose_cube) I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), (self.R.shape[0] - 1, 3, 3)) lrotmin = (self.R[1:] - I_cube).ravel() # how pose affect body shape in zero pose v_posed = v_shaped + self.posedirs.dot(lrotmin) # world transformation of each joint G = np.empty((self.kintree_table.shape[1], 4, 4)) G[0] = self.with_zeros(np.hstack((self.R[0], self.J[0, :].reshape([3, 1])))) for i in range(1, self.kintree_table.shape[1]): G[i] = G[self.parent[i]].dot( self.with_zeros( np.hstack( [ self.R[i], ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])), ] ) ) ) # remove the transformation due to the rest pose G = G - self.pack(np.matmul(G, np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1]))) # transformation of each vertex T = np.tensordot(self.weights, G, axes=[[1], [0]]) rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1]))) v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] self.verts = v + self.trans.reshape([1, 3]) self.G = G def rodrigues(self, r): """ Rodrigues' rotation formula that turns axis-angle vector into rotation matrix in a batch-ed manner. Parameter: ---------- r: Axis-angle rotation vector of shape [batch_size, 1, 3]. Return: ------- Rotation matrix of shape [batch_size, 3, 3]. """ theta = np.linalg.norm(r, axis=(1, 2), keepdims=True) # avoid zero divide theta = np.maximum(theta, np.finfo(np.float64).tiny) r_hat = r / theta cos = np.cos(theta) z_stick = np.zeros(theta.shape[0]) m = np.dstack( [ z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick, ] ).reshape([-1, 3, 3]) i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3]) A = np.transpose(r_hat, axes=[0, 2, 1]) B = r_hat dot = np.matmul(A, B) R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m return R def with_zeros(self, x): """ Append a [0, 0, 0, 1] vector to a [3, 4] matrix. Parameter: --------- x: Matrix to be appended. Return: ------ Matrix after appending of shape [4,4] """ return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]]))) def pack(self, x): """ Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched manner. Parameter: ---------- x: Matrices to be appended of shape [batch_size, 4, 1] Return: ------ Matrix of shape [batch_size, 4, 4] after appending. """ return np.dstack((np.zeros((x.shape[0], 4, 3)), x)) def save_to_obj(self, path): """ Save the SMPL model into .obj file. Parameter: --------- path: Path to save. """ with open(path, "w") as fp: for v in self.verts: fp.write("v %f %f %f\n" % (v[0], v[1], v[2])) for f in self.faces + 1: fp.write("f %d %d %d\n" % (f[0], f[1], f[2])) class TetraSMPLModel: def __init__(self, model_path, model_addition_path, age="adult", v_template=None): """ SMPL model. Parameter: --------- model_path: Path to the SMPL model parameters, pre-processed by `preprocess.py`. """ with open(model_path, "rb") as f: params = pickle.load(f, encoding="latin1") self.J_regressor = params["J_regressor"] self.weights = np.asarray(params["weights"]) self.posedirs = np.asarray(params["posedirs"]) if v_template is not None: self.v_template = v_template else: self.v_template = np.asarray(params["v_template"]) self.shapedirs = np.asarray(params["shapedirs"]) self.faces = np.asarray(params["f"]) self.kintree_table = np.asarray(params["kintree_table"]) params_added = np.load(model_addition_path) self.v_template_added = params_added["v_template_added"] self.weights_added = params_added["weights_added"] self.shapedirs_added = params_added["shapedirs_added"] self.posedirs_added = params_added["posedirs_added"] self.tetrahedrons = params_added["tetrahedrons"] id_to_col = {self.kintree_table[1, i]: i for i in range(self.kintree_table.shape[1])} self.parent = { i: id_to_col[self.kintree_table[0, i]] for i in range(1, self.kintree_table.shape[1]) } self.pose_shape = [24, 3] self.beta_shape = [10] self.trans_shape = [3] if age == "kid": v_template_smil = np.load( os.path.join(os.path.dirname(model_path), "smpl_kid_template.npy") ) v_template_smil -= np.mean(v_template_smil, axis=0) v_template_diff = np.expand_dims(v_template_smil - self.v_template, axis=2) self.shapedirs = np.concatenate( (self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff), axis=2 ) self.beta_shape[0] += 1 self.pose = np.zeros(self.pose_shape) self.beta = np.zeros(self.beta_shape) self.trans = np.zeros(self.trans_shape) self.verts = None self.verts_added = None self.J = None self.R = None self.G = None self.update() def set_params(self, pose=None, beta=None, trans=None): """ Set pose, shape, and/or translation parameters of SMPL model. Verices of the model will be updated and returned. Prameters: --------- pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation relative to parent joint. For root joint it's global orientation. Represented in a axis-angle format. beta: Parameter for model shape. A vector of shape [10]. Coefficients for PCA component. Only 10 components were released by MPI. trans: Global translation of shape [3]. Return: ------ Updated vertices. """ if torch.is_tensor(pose): pose = pose.detach().cpu().numpy() if torch.is_tensor(beta): beta = beta.detach().cpu().numpy() if pose is not None: self.pose = pose if beta is not None: self.beta = beta.flatten() if trans is not None: self.trans = trans self.update() return self.verts def update(self): """ Called automatically when parameters are updated. """ # how beta affect body shape v_shaped = self.shapedirs.dot(self.beta) + self.v_template v_shaped_added = self.shapedirs_added.dot(self.beta) + self.v_template_added # joints location self.J = self.J_regressor.dot(v_shaped) pose_cube = self.pose.reshape((-1, 1, 3)) # rotation matrix for each joint self.R = self.rodrigues(pose_cube) I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), (self.R.shape[0] - 1, 3, 3)) lrotmin = (self.R[1:] - I_cube).ravel() # how pose affect body shape in zero pose v_posed = v_shaped + self.posedirs.dot(lrotmin) v_posed_added = v_shaped_added + self.posedirs_added.dot(lrotmin) # world transformation of each joint G = np.empty((self.kintree_table.shape[1], 4, 4)) G[0] = self.with_zeros(np.hstack((self.R[0], self.J[0, :].reshape([3, 1])))) for i in range(1, self.kintree_table.shape[1]): G[i] = G[self.parent[i]].dot( self.with_zeros( np.hstack( [ self.R[i], ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])), ] ) ) ) # remove the transformation due to the rest pose G = G - self.pack(np.matmul(G, np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1]))) self.G = G # transformation of each vertex T = np.tensordot(self.weights, G, axes=[[1], [0]]) rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1]))) v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] self.verts = v + self.trans.reshape([1, 3]) T_added = np.tensordot(self.weights_added, G, axes=[[1], [0]]) rest_shape_added_h = np.hstack((v_posed_added, np.ones([v_posed_added.shape[0], 1]))) v_added = np.matmul(T_added, rest_shape_added_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] self.verts_added = v_added + self.trans.reshape([1, 3]) def rodrigues(self, r): """ Rodrigues' rotation formula that turns axis-angle vector into rotation matrix in a batch-ed manner. Parameter: ---------- r: Axis-angle rotation vector of shape [batch_size, 1, 3]. Return: ------- Rotation matrix of shape [batch_size, 3, 3]. """ theta = np.linalg.norm(r, axis=(1, 2), keepdims=True) # avoid zero divide theta = np.maximum(theta, np.finfo(np.float64).tiny) r_hat = r / theta cos = np.cos(theta) z_stick = np.zeros(theta.shape[0]) m = np.dstack( [ z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick, ] ).reshape([-1, 3, 3]) i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3]) A = np.transpose(r_hat, axes=[0, 2, 1]) B = r_hat dot = np.matmul(A, B) R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m return R def with_zeros(self, x): """ Append a [0, 0, 0, 1] vector to a [3, 4] matrix. Parameter: --------- x: Matrix to be appended. Return: ------ Matrix after appending of shape [4,4] """ return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]]))) def pack(self, x): """ Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched manner. Parameter: ---------- x: Matrices to be appended of shape [batch_size, 4, 1] Return: ------ Matrix of shape [batch_size, 4, 4] after appending. """ return np.dstack((np.zeros((x.shape[0], 4, 3)), x)) def save_mesh_to_obj(self, path): """ Save the SMPL model into .obj file. Parameter: --------- path: Path to save. """ with open(path, "w") as fp: for v in self.verts: fp.write("v %f %f %f\n" % (v[0], v[1], v[2])) for f in self.faces + 1: fp.write("f %d %d %d\n" % (f[0], f[1], f[2])) def save_tetrahedron_to_obj(self, path): """ Save the tetrahedron SMPL model into .obj file. Parameter: --------- path: Path to save. """ with open(path, "w") as fp: for v in self.verts: fp.write("v %f %f %f 1 0 0\n" % (v[0], v[1], v[2])) for va in self.verts_added: fp.write("v %f %f %f 0 0 1\n" % (va[0], va[1], va[2])) for t in self.tetrahedrons + 1: fp.write("f %d %d %d\n" % (t[0], t[2], t[1])) fp.write("f %d %d %d\n" % (t[0], t[3], t[2])) fp.write("f %d %d %d\n" % (t[0], t[1], t[3])) fp.write("f %d %d %d\n" % (t[1], t[2], t[3]))