File size: 5,719 Bytes
162943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''
This script is borrowed and extended from https://github.com/nkolot/SPIN/blob/master/train/fits_dict.py
'''
import os
import cv2
import torch
import numpy as np
from torchgeometry import angle_axis_to_rotation_matrix, rotation_matrix_to_angle_axis

from core import path_config, constants

import logging

logger = logging.getLogger(__name__)


class FitsDict():
    """ Dictionary keeping track of the best fit per image in the training set """

    def __init__(self, options, train_dataset):
        self.options = options
        self.train_dataset = train_dataset
        self.fits_dict = {}
        self.valid_fit_state = {}
        # array used to flip SMPL pose parameters
        self.flipped_parts = torch.tensor(constants.SMPL_POSE_FLIP_PERM,
                                          dtype=torch.int64)
        # Load dictionary state
        for ds_name, ds in train_dataset.dataset_dict.items():
            if ds_name in ['h36m']:
                dict_file = os.path.join(path_config.FINAL_FITS_DIR,
                                         ds_name + '.npy')
                self.fits_dict[ds_name] = torch.from_numpy(np.load(dict_file))
                self.valid_fit_state[ds_name] = torch.ones(len(
                    self.fits_dict[ds_name]),
                    dtype=torch.uint8)
            else:
                dict_file = os.path.join(path_config.FINAL_FITS_DIR,
                                         ds_name + '.npz')
                fits_dict = np.load(dict_file)
                opt_pose = torch.from_numpy(fits_dict['pose'])
                opt_betas = torch.from_numpy(fits_dict['betas'])
                opt_valid_fit = torch.from_numpy(fits_dict['valid_fit']).to(
                    torch.uint8)
                self.fits_dict[ds_name] = torch.cat([opt_pose, opt_betas],
                                                    dim=1)
                self.valid_fit_state[ds_name] = opt_valid_fit

        if not options.single_dataset:
            for ds in train_dataset.datasets:
                if ds.dataset not in ['h36m']:
                    ds.pose = self.fits_dict[ds.dataset][:, :72].numpy()
                    ds.betas = self.fits_dict[ds.dataset][:, 72:].numpy()
                    ds.has_smpl = self.valid_fit_state[ds.dataset].numpy()

    def save(self):
        """ Save dictionary state to disk """
        for ds_name in self.train_dataset.dataset_dict.keys():
            dict_file = os.path.join(self.options.checkpoint_dir,
                                     ds_name + '_fits.npy')
            np.save(dict_file, self.fits_dict[ds_name].cpu().numpy())

    def __getitem__(self, x):
        """ Retrieve dictionary entries """
        dataset_name, ind, rot, is_flipped = x
        batch_size = len(dataset_name)
        pose = torch.zeros((batch_size, 72))
        betas = torch.zeros((batch_size, 10))
        for ds, i, n in zip(dataset_name, ind, range(batch_size)):
            params = self.fits_dict[ds][i]
            pose[n, :] = params[:72]
            betas[n, :] = params[72:]
        pose = pose.clone()
        # Apply flipping and rotation
        pose = self.flip_pose(self.rotate_pose(pose, rot), is_flipped)
        betas = betas.clone()
        return pose, betas

    def get_vaild_state(self, dataset_name, ind):
        batch_size = len(dataset_name)
        valid_fit = torch.zeros(batch_size, dtype=torch.uint8)
        for ds, i, n in zip(dataset_name, ind, range(batch_size)):
            valid_fit[n] = self.valid_fit_state[ds][i]
        valid_fit = valid_fit.clone()
        return valid_fit

    def __setitem__(self, x, val):
        """ Update dictionary entries """
        dataset_name, ind, rot, is_flipped, update = x
        pose, betas = val
        batch_size = len(dataset_name)
        # Undo flipping and rotation
        pose = self.rotate_pose(self.flip_pose(pose, is_flipped), -rot)
        params = torch.cat((pose, betas), dim=-1).cpu()
        for ds, i, n in zip(dataset_name, ind, range(batch_size)):
            if update[n]:
                self.fits_dict[ds][i] = params[n]

    def flip_pose(self, pose, is_flipped):
        """flip SMPL pose parameters"""
        is_flipped = is_flipped.byte()
        pose_f = pose.clone()
        pose_f[is_flipped, :] = pose[is_flipped][:, self.flipped_parts]
        # we also negate the second and the third dimension of the axis-angle representation
        pose_f[is_flipped, 1::3] *= -1
        pose_f[is_flipped, 2::3] *= -1
        return pose_f

    def rotate_pose(self, pose, rot):
        """Rotate SMPL pose parameters by rot degrees"""
        pose = pose.clone()
        cos = torch.cos(-np.pi * rot / 180.)
        sin = torch.sin(-np.pi * rot / 180.)
        zeros = torch.zeros_like(cos)
        r3 = torch.zeros(cos.shape[0], 1, 3, device=cos.device)
        r3[:, 0, -1] = 1
        R = torch.cat([
            torch.stack([cos, -sin, zeros], dim=-1).unsqueeze(1),
            torch.stack([sin, cos, zeros], dim=-1).unsqueeze(1), r3
        ],
            dim=1)
        global_pose = pose[:, :3]
        global_pose_rotmat = angle_axis_to_rotation_matrix(global_pose)
        global_pose_rotmat_3b3 = global_pose_rotmat[:, :3, :3]
        global_pose_rotmat_3b3 = torch.matmul(R, global_pose_rotmat_3b3)
        global_pose_rotmat[:, :3, :3] = global_pose_rotmat_3b3
        global_pose_rotmat = global_pose_rotmat[:, :-1, :-1].cpu().numpy()
        global_pose_np = np.zeros((global_pose.shape[0], 3))
        for i in range(global_pose.shape[0]):
            aa, _ = cv2.Rodrigues(global_pose_rotmat[i])
            global_pose_np[i, :] = aa.squeeze()
        pose[:, :3] = torch.from_numpy(global_pose_np).to(pose.device)
        return pose