ICON / lib /common /seg3d_utils.py
Yuliang's picture
init
162943d
raw
history blame
16.5 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
def plot_mask2D(mask,
title="",
point_coords=None,
figsize=10,
point_marker_size=5):
'''
Simple plotting tool to show intermediate mask predictions and points
where PointRend is applied.
Args:
mask (Tensor): mask prediction of shape HxW
title (str): title for the plot
point_coords ((Tensor, Tensor)): x and y point coordinates
figsize (int): size of the figure to plot
point_marker_size (int): marker size for points
'''
H, W = mask.shape
plt.figure(figsize=(figsize, figsize))
if title:
title += ", "
plt.title("{}resolution {}x{}".format(title, H, W), fontsize=30)
plt.ylabel(H, fontsize=30)
plt.xlabel(W, fontsize=30)
plt.xticks([], [])
plt.yticks([], [])
plt.imshow(mask.detach(),
interpolation="nearest",
cmap=plt.get_cmap('gray'))
if point_coords is not None:
plt.scatter(x=point_coords[0],
y=point_coords[1],
color="red",
s=point_marker_size,
clip_on=True)
plt.xlim(-0.5, W - 0.5)
plt.ylim(H - 0.5, -0.5)
plt.show()
def plot_mask3D(mask=None,
title="",
point_coords=None,
figsize=1500,
point_marker_size=8,
interactive=True):
'''
Simple plotting tool to show intermediate mask predictions and points
where PointRend is applied.
Args:
mask (Tensor): mask prediction of shape DxHxW
title (str): title for the plot
point_coords ((Tensor, Tensor, Tensor)): x and y and z point coordinates
figsize (int): size of the figure to plot
point_marker_size (int): marker size for points
'''
import trimesh
import vtkplotter
from skimage import measure
vp = vtkplotter.Plotter(title=title, size=(figsize, figsize))
vis_list = []
if mask is not None:
mask = mask.detach().to("cpu").numpy()
mask = mask.transpose(2, 1, 0)
# marching cube to find surface
verts, faces, normals, values = measure.marching_cubes_lewiner(
mask, 0.5, gradient_direction='ascent')
# create a mesh
mesh = trimesh.Trimesh(verts, faces)
mesh.visual.face_colors = [200, 200, 250, 100]
vis_list.append(mesh)
if point_coords is not None:
point_coords = torch.stack(point_coords, 1).to("cpu").numpy()
# import numpy as np
# select_x = np.logical_and(point_coords[:, 0] >= 16, point_coords[:, 0] <= 112)
# select_y = np.logical_and(point_coords[:, 1] >= 48, point_coords[:, 1] <= 272)
# select_z = np.logical_and(point_coords[:, 2] >= 16, point_coords[:, 2] <= 112)
# select = np.logical_and(np.logical_and(select_x, select_y), select_z)
# point_coords = point_coords[select, :]
pc = vtkplotter.Points(point_coords, r=point_marker_size, c='red')
vis_list.append(pc)
vp.show(*vis_list,
bg="white",
axes=1,
interactive=interactive,
azimuth=30,
elevation=30)
def create_grid3D(min, max, steps):
if type(min) is int:
min = (min, min, min) # (x, y, z)
if type(max) is int:
max = (max, max, max) # (x, y)
if type(steps) is int:
steps = (steps, steps, steps) # (x, y, z)
arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
arrangeZ = torch.linspace(min[2], max[2], steps[2]).long()
gridD, girdH, gridW = torch.meshgrid([arrangeZ, arrangeY, arrangeX])
coords = torch.stack([gridW, girdH,
gridD]) # [2, steps[0], steps[1], steps[2]]
coords = coords.view(3, -1).t() # [N, 3]
return coords
def create_grid2D(min, max, steps):
if type(min) is int:
min = (min, min) # (x, y)
if type(max) is int:
max = (max, max) # (x, y)
if type(steps) is int:
steps = (steps, steps) # (x, y)
arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
girdH, gridW = torch.meshgrid([arrangeY, arrangeX])
coords = torch.stack([gridW, girdH]) # [2, steps[0], steps[1]]
coords = coords.view(2, -1).t() # [N, 2]
return coords
class SmoothConv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super().__init__()
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
self.padding = (kernel_size - 1) // 2
weight = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**2)
self.register_buffer('weight', weight)
def forward(self, input):
return F.conv2d(input, self.weight, padding=self.padding)
class SmoothConv3D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super().__init__()
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
self.padding = (kernel_size - 1) // 2
weight = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**3)
self.register_buffer('weight', weight)
def forward(self, input):
return F.conv3d(input, self.weight, padding=self.padding)
def build_smooth_conv3D(in_channels=1,
out_channels=1,
kernel_size=3,
padding=1):
smooth_conv = torch.nn.Conv3d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding)
smooth_conv.weight.data = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**3)
smooth_conv.bias.data = torch.zeros(out_channels)
return smooth_conv
def build_smooth_conv2D(in_channels=1,
out_channels=1,
kernel_size=3,
padding=1):
smooth_conv = torch.nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding)
smooth_conv.weight.data = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**2)
smooth_conv.bias.data = torch.zeros(out_channels)
return smooth_conv
def get_uncertain_point_coords_on_grid3D(uncertainty_map, num_points,
**kwargs):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
values for a set of points on a regular H x W x D grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W x D) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W x D grid.
"""
R, _, D, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
# d_step = 1.0 / float(D)
num_points = min(D * H * W, num_points)
point_scores, point_indices = torch.topk(uncertainty_map.view(
R, D * H * W),
k=num_points,
dim=1)
point_coords = torch.zeros(R,
num_points,
3,
dtype=torch.float,
device=uncertainty_map.device)
# point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
# point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
# point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
point_coords[:, :, 0] = (point_indices % W).to(torch.float) # x
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) # y
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) # z
print(f"resolution {D} x {H} x {W}", point_scores.min(),
point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid3D_faster(uncertainty_map, num_points,
clip_min):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
values for a set of points on a regular H x W x D grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W x D) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W x D grid.
"""
R, _, D, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
# d_step = 1.0 / float(D)
assert R == 1, "batchsize > 1 is not implemented!"
uncertainty_map = uncertainty_map.view(D * H * W)
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
num_points = min(num_points, indices.size(0))
point_scores, point_indices = torch.topk(uncertainty_map[indices],
k=num_points,
dim=0)
point_indices = indices[point_indices].unsqueeze(0)
point_coords = torch.zeros(R,
num_points,
3,
dtype=torch.float,
device=uncertainty_map.device)
# point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
# point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
# point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
point_coords[:, :, 0] = (point_indices % W).to(torch.float) # x
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) # y
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) # z
# print (f"resolution {D} x {H} x {W}", point_scores.min(), point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid2D(uncertainty_map, num_points,
**kwargs):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
num_points = min(H * W, num_points)
point_scores, point_indices = torch.topk(uncertainty_map.view(R, H * W),
k=num_points,
dim=1)
point_coords = torch.zeros(R,
num_points,
2,
dtype=torch.long,
device=uncertainty_map.device)
# point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
# point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
point_coords[:, :, 0] = (point_indices % W).to(torch.long)
point_coords[:, :, 1] = (point_indices // W).to(torch.long)
# print (point_scores.min(), point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid2D_faster(uncertainty_map, num_points,
clip_min):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
assert R == 1, "batchsize > 1 is not implemented!"
uncertainty_map = uncertainty_map.view(H * W)
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
num_points = min(num_points, indices.size(0))
point_scores, point_indices = torch.topk(uncertainty_map[indices],
k=num_points,
dim=0)
point_indices = indices[point_indices].unsqueeze(0)
point_coords = torch.zeros(R,
num_points,
2,
dtype=torch.long,
device=uncertainty_map.device)
# point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
# point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
point_coords[:, :, 0] = (point_indices % W).to(torch.long)
point_coords[:, :, 1] = (point_indices // W).to(torch.long)
# print (point_scores.min(), point_scores.max())
return point_indices, point_coords
def calculate_uncertainty(logits, classes=None, balance_value=0.5):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
classes (list): A list of length R that contains either predicted of ground truth class
for eash predicted mask.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
if logits.shape[1] == 1:
gt_class_logits = logits
else:
gt_class_logits = logits[
torch.arange(logits.shape[0], device=logits.device),
classes].unsqueeze(1)
return -torch.abs(gt_class_logits - balance_value)