Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import smplx | |
from lib.pymaf.utils.geometry import rotation_matrix_to_angle_axis, batch_rodrigues | |
from lib.pymaf.utils.imutils import process_image | |
from lib.pymaf.core import path_config | |
from lib.pymaf.models import pymaf_net | |
from lib.common.config import cfg | |
from lib.common.render import Render | |
from lib.dataset.body_model import TetraSMPLModel | |
from lib.dataset.mesh_util import get_visibility, SMPLX | |
import os.path as osp | |
import os | |
import torch | |
import glob | |
import numpy as np | |
import random | |
import human_det | |
from termcolor import colored | |
from PIL import ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
class TestDataset(): | |
def __init__(self, cfg, device): | |
random.seed(1993) | |
self.image_dir = cfg['image_dir'] | |
self.seg_dir = cfg['seg_dir'] | |
self.has_det = cfg['has_det'] | |
self.hps_type = cfg['hps_type'] | |
self.smpl_type = 'smpl' if cfg['hps_type'] != 'pixie' else 'smplx' | |
self.smpl_gender = 'neutral' | |
self.device = device | |
if self.has_det: | |
self.det = human_det.Detection() | |
else: | |
self.det = None | |
keep_lst = sorted(glob.glob(f"{self.image_dir}/*")) | |
img_fmts = ['jpg', 'png', 'jpeg', "JPG", 'bmp'] | |
keep_lst = [ | |
item for item in keep_lst if item.split(".")[-1] in img_fmts | |
] | |
self.subject_list = sorted( | |
[item for item in keep_lst if item.split(".")[-1] in img_fmts]) | |
# smpl related | |
self.smpl_data = SMPLX() | |
self.get_smpl_model = lambda smpl_type, smpl_gender: smplx.create( | |
model_path=self.smpl_data.model_dir, | |
gender=smpl_gender, | |
model_type=smpl_type, | |
ext='npz') | |
# Load SMPL model | |
self.smpl_model = self.get_smpl_model( | |
self.smpl_type, self.smpl_gender).to(self.device) | |
self.faces = self.smpl_model.faces | |
self.hps = pymaf_net(path_config.SMPL_MEAN_PARAMS, | |
pretrained=True).to(self.device) | |
self.hps.load_state_dict(torch.load( | |
path_config.CHECKPOINT_FILE)['model'], | |
strict=True) | |
self.hps.eval() | |
print(colored(f"Using {self.hps_type} as HPS Estimator\n", "green")) | |
self.render = Render(size=512, device=device) | |
def __len__(self): | |
return len(self.subject_list) | |
def compute_vis_cmap(self, smpl_verts, smpl_faces): | |
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1) | |
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long()) | |
if self.smpl_type == 'smpl': | |
smplx_ind = self.smpl_data.smpl2smplx(np.arange(smpl_vis.shape[0])) | |
else: | |
smplx_ind = np.arange(smpl_vis.shape[0]) | |
smpl_cmap = self.smpl_data.get_smpl_mat(smplx_ind) | |
return { | |
'smpl_vis': smpl_vis.unsqueeze(0).to(self.device), | |
'smpl_cmap': smpl_cmap.unsqueeze(0).to(self.device), | |
'smpl_verts': smpl_verts.unsqueeze(0) | |
} | |
def compute_voxel_verts(self, body_pose, global_orient, betas, trans, | |
scale): | |
smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl") | |
tetra_path = osp.join(self.smpl_data.tedra_dir, | |
'tetra_neutral_adult_smpl.npz') | |
smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult') | |
pose = torch.cat([global_orient[0], body_pose[0]], dim=0) | |
smpl_model.set_params(rotation_matrix_to_angle_axis(pose), | |
beta=betas[0]) | |
verts = np.concatenate( | |
[smpl_model.verts, smpl_model.verts_added], | |
axis=0) * scale.item() + trans.detach().cpu().numpy() | |
faces = np.loadtxt(osp.join(self.smpl_data.tedra_dir, | |
'tetrahedrons_neutral_adult.txt'), | |
dtype=np.int32) - 1 | |
pad_v_num = int(8000 - verts.shape[0]) | |
pad_f_num = int(25100 - faces.shape[0]) | |
verts = np.pad(verts, ((0, pad_v_num), (0, 0)), | |
mode='constant', | |
constant_values=0.0).astype(np.float32) * 0.5 | |
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), | |
mode='constant', | |
constant_values=0.0).astype(np.int32) | |
verts[:, 2] *= -1.0 | |
voxel_dict = { | |
'voxel_verts': | |
torch.from_numpy(verts).to(self.device).unsqueeze(0).float(), | |
'voxel_faces': | |
torch.from_numpy(faces).to(self.device).unsqueeze(0).long(), | |
'pad_v_num': | |
torch.tensor(pad_v_num).to(self.device).unsqueeze(0).long(), | |
'pad_f_num': | |
torch.tensor(pad_f_num).to(self.device).unsqueeze(0).long() | |
} | |
return voxel_dict | |
def __getitem__(self, index): | |
img_path = self.subject_list[index] | |
img_name = img_path.split("/")[-1].rsplit(".", 1)[0] | |
if self.seg_dir is None: | |
img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image( | |
img_path, self.det, self.hps_type, 512, self.device) | |
data_dict = { | |
'name': img_name, | |
'image': img_icon.to(self.device).unsqueeze(0), | |
'ori_image': img_ori, | |
'mask': img_mask, | |
'uncrop_param': uncrop_param | |
} | |
else: | |
img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image( | |
img_path, self.det, self.hps_type, 512, self.device, | |
seg_path=os.path.join(self.seg_dir, f'{img_name}.json')) | |
data_dict = { | |
'name': img_name, | |
'image': img_icon.to(self.device).unsqueeze(0), | |
'ori_image': img_ori, | |
'mask': img_mask, | |
'uncrop_param': uncrop_param, | |
'segmentations': segmentations | |
} | |
with torch.no_grad(): | |
# import ipdb; ipdb.set_trace() | |
preds_dict = self.hps.forward(img_hps) | |
data_dict['smpl_faces'] = torch.Tensor( | |
self.faces.astype(np.int16)).long().unsqueeze(0).to( | |
self.device) | |
if self.hps_type == 'pymaf': | |
output = preds_dict['smpl_out'][-1] | |
scale, tranX, tranY = output['theta'][0, :3] | |
data_dict['betas'] = output['pred_shape'] | |
data_dict['body_pose'] = output['rotmat'][:, 1:] | |
data_dict['global_orient'] = output['rotmat'][:, 0:1] | |
data_dict['smpl_verts'] = output['verts'] | |
elif self.hps_type == 'pare': | |
data_dict['body_pose'] = preds_dict['pred_pose'][:, 1:] | |
data_dict['global_orient'] = preds_dict['pred_pose'][:, 0:1] | |
data_dict['betas'] = preds_dict['pred_shape'] | |
data_dict['smpl_verts'] = preds_dict['smpl_vertices'] | |
scale, tranX, tranY = preds_dict['pred_cam'][0, :3] | |
elif self.hps_type == 'pixie': | |
data_dict.update(preds_dict) | |
data_dict['body_pose'] = preds_dict['body_pose'] | |
data_dict['global_orient'] = preds_dict['global_pose'] | |
data_dict['betas'] = preds_dict['shape'] | |
data_dict['smpl_verts'] = preds_dict['vertices'] | |
scale, tranX, tranY = preds_dict['cam'][0, :3] | |
elif self.hps_type == 'hybrik': | |
data_dict['body_pose'] = preds_dict['pred_theta_mats'][:, 1:] | |
data_dict['global_orient'] = preds_dict['pred_theta_mats'][:, [0]] | |
data_dict['betas'] = preds_dict['pred_shape'] | |
data_dict['smpl_verts'] = preds_dict['pred_vertices'] | |
scale, tranX, tranY = preds_dict['pred_camera'][0, :3] | |
scale = scale * 2 | |
elif self.hps_type == 'bev': | |
data_dict['betas'] = torch.from_numpy(preds_dict['smpl_betas'])[ | |
[0], :10].to(self.device).float() | |
pred_thetas = batch_rodrigues(torch.from_numpy( | |
preds_dict['smpl_thetas'][0]).reshape(-1, 3)).float() | |
data_dict['body_pose'] = pred_thetas[1:][None].to(self.device) | |
data_dict['global_orient'] = pred_thetas[[0]][None].to(self.device) | |
data_dict['smpl_verts'] = torch.from_numpy( | |
preds_dict['verts'][[0]]).to(self.device).float() | |
tranX = preds_dict['cam_trans'][0, 0] | |
tranY = preds_dict['cam'][0, 1] + 0.28 | |
scale = preds_dict['cam'][0, 0] * 1.1 | |
data_dict['scale'] = scale | |
data_dict['trans'] = torch.tensor( | |
[tranX, tranY, 0.0]).to(self.device).float() | |
# data_dict info (key-shape): | |
# scale, tranX, tranY - tensor.float | |
# betas - [1,10] / [1, 200] | |
# body_pose - [1, 23, 3, 3] / [1, 21, 3, 3] | |
# global_orient - [1, 1, 3, 3] | |
# smpl_verts - [1, 6890, 3] / [1, 10475, 3] | |
return data_dict | |
def render_normal(self, verts, faces): | |
# render optimized mesh (normal, T_normal, image [-1,1]) | |
self.render.load_meshes(verts, faces) | |
return self.render.get_rgb_image() | |
def render_depth(self, verts, faces): | |
# render optimized mesh (normal, T_normal, image [-1,1]) | |
self.render.load_meshes(verts, faces) | |
return self.render.get_depth_map(cam_ids=[0, 2]) | |
def visualize_alignment(self, data): | |
import vedo | |
import trimesh | |
if self.hps_type != 'pixie': | |
smpl_out = self.smpl_model(betas=data['betas'], | |
body_pose=data['body_pose'], | |
global_orient=data['global_orient'], | |
pose2rot=False) | |
smpl_verts = ( | |
(smpl_out.vertices + data['trans']) * data['scale']).detach().cpu().numpy()[0] | |
else: | |
smpl_verts, _, _ = self.smpl_model(shape_params=data['betas'], | |
expression_params=data['exp'], | |
body_pose=data['body_pose'], | |
global_pose=data['global_orient'], | |
jaw_pose=data['jaw_pose'], | |
left_hand_pose=data['left_hand_pose'], | |
right_hand_pose=data['right_hand_pose']) | |
smpl_verts = ( | |
(smpl_verts + data['trans']) * data['scale']).detach().cpu().numpy()[0] | |
smpl_verts *= np.array([1.0, -1.0, -1.0]) | |
faces = data['smpl_faces'][0].detach().cpu().numpy() | |
image_P = data['image'] | |
image_F, image_B = self.render_normal(smpl_verts, faces) | |
# create plot | |
vp = vedo.Plotter(title="", size=(1500, 1500)) | |
vis_list = [] | |
image_F = ( | |
0.5 * (1.0 + image_F[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) | |
image_B = ( | |
0.5 * (1.0 + image_B[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) | |
image_P = ( | |
0.5 * (1.0 + image_P[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) | |
vis_list.append(vedo.Picture(image_P*0.5+image_F * | |
0.5).scale(2.0/image_P.shape[0]).pos(-1.0, -1.0, 1.0)) | |
vis_list.append(vedo.Picture(image_F).scale( | |
2.0/image_F.shape[0]).pos(-1.0, -1.0, -0.5)) | |
vis_list.append(vedo.Picture(image_B).scale( | |
2.0/image_B.shape[0]).pos(-1.0, -1.0, -1.0)) | |
# create a mesh | |
mesh = trimesh.Trimesh(smpl_verts, faces, process=False) | |
mesh.visual.vertex_colors = [200, 200, 0] | |
vis_list.append(mesh) | |
vp.show(*vis_list, bg="white", axes=1, interactive=True) | |
if __name__ == '__main__': | |
cfg.merge_from_file("./configs/icon-filter.yaml") | |
cfg.merge_from_file('./lib/pymaf/configs/pymaf_config.yaml') | |
cfg_show_list = [ | |
'test_gpus', ['0'], 'mcube_res', 512, 'clean_mesh', False | |
] | |
cfg.merge_from_list(cfg_show_list) | |
cfg.freeze() | |
os.environ['CUDA_VISIBLE_DEVICES'] = "0" | |
device = torch.device('cuda:0') | |
dataset = TestDataset( | |
{ | |
'image_dir': "./examples", | |
'has_det': True, # w/ or w/o detection | |
'hps_type': 'bev' # pymaf/pare/pixie/hybrik/bev | |
}, device) | |
for i in range(len(dataset)): | |
dataset.visualize_alignment(dataset[i]) | |