ICON / lib /dataset /PIFuDataModule.py
Yuliang's picture
done
2d5f249
import numpy as np
from torch.utils.data import DataLoader
from .PIFuDataset import PIFuDataset
import pytorch_lightning as pl
class PIFuDataModule(pl.LightningDataModule):
def __init__(self, cfg):
super(PIFuDataModule, self).__init__()
self.cfg = cfg
self.overfit = self.cfg.overfit
if self.overfit:
self.batch_size = 1
else:
self.batch_size = self.cfg.batch_size
self.data_size = {}
def prepare_data(self):
pass
@staticmethod
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def setup(self, stage):
if stage == 'fit':
self.train_dataset = PIFuDataset(cfg=self.cfg, split="train")
self.val_dataset = PIFuDataset(cfg=self.cfg, split="val")
self.data_size = {'train': len(self.train_dataset),
'val': len(self.val_dataset)}
if stage == 'test':
self.test_dataset = PIFuDataset(cfg=self.cfg, split="test")
def train_dataloader(self):
train_data_loader = DataLoader(
self.train_dataset,
batch_size=self.batch_size, shuffle=True,
num_workers=self.cfg.num_threads, pin_memory=True,
worker_init_fn=self.worker_init_fn)
return train_data_loader
def val_dataloader(self):
if self.overfit:
current_dataset = self.train_dataset
else:
current_dataset = self.val_dataset
val_data_loader = DataLoader(
current_dataset,
batch_size=1, shuffle=False,
num_workers=self.cfg.num_threads, pin_memory=True,
worker_init_fn=self.worker_init_fn)
return val_data_loader
def test_dataloader(self):
test_data_loader = DataLoader(
self.test_dataset,
batch_size=1, shuffle=False,
num_workers=self.cfg.num_threads, pin_memory=True)
return test_data_loader