# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import numpy as np import cv2 import torch import torchvision import trimesh from pytorch3d.io import load_obj from termcolor import colored from scipy.spatial import cKDTree from pytorch3d.structures import Meshes import torch.nn.functional as F import os from lib.pymaf.utils.imutils import uncrop from lib.common.render_utils import Pytorch3dRasterizer, face_vertices from pytorch3d.renderer.mesh import rasterize_meshes from PIL import Image, ImageFont, ImageDraw from kaolin.ops.mesh import check_sign from kaolin.metrics.trianglemesh import point_to_mesh_distance from pytorch3d.loss import ( mesh_laplacian_smoothing, mesh_normal_consistency ) from huggingface_hub import hf_hub_download, hf_hub_url, cached_download def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def tensor2variable(tensor, device): # [1,23,3,3] return torch.tensor(tensor, device=device, requires_grad=True) def normal_loss(vec1, vec2): # vec1_mask = vec1.sum(dim=1) != 0.0 # vec2_mask = vec2.sum(dim=1) != 0.0 # union_mask = vec1_mask * vec2_mask vec_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)(vec1, vec2) # vec_diff = ((vec_sim-1.0)**2)[union_mask].mean() vec_diff = ((vec_sim-1.0)**2).mean() return vec_diff class GMoF(torch.nn.Module): def __init__(self, rho=1): super(GMoF, self).__init__() self.rho = rho def extra_repr(self): return 'rho = {}'.format(self.rho) def forward(self, residual): dist = torch.div(residual, residual + self.rho ** 2) return self.rho ** 2 * dist def mesh_edge_loss(meshes, target_length: float = 0.0): """ Computes mesh edge length regularization loss averaged across all meshes in a batch. Each mesh contributes equally to the final loss, regardless of the number of edges per mesh in the batch by weighting each mesh with the inverse number of edges. For example, if mesh 3 (out of N) has only E=4 edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to contribute to the final loss. Args: meshes: Meshes object with a batch of meshes. target_length: Resting value for the edge length. Returns: loss: Average loss across the batch. Returns 0 if meshes contains no meshes or all empty meshes. """ if meshes.isempty(): return torch.tensor( [0.0], dtype=torch.float32, device=meshes.device, requires_grad=True ) N = len(meshes) edges_packed = meshes.edges_packed() # (sum(E_n), 3) verts_packed = meshes.verts_packed() # (sum(V_n), 3) edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) num_edges_per_mesh = meshes.num_edges_per_mesh() # N # Determine the weight for each edge based on the number of edges in the # mesh it corresponds to. # TODO (nikhilar) Find a faster way of computing the weights for each edge # as this is currently a bottleneck for meshes with a large number of faces. weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) weights = 1.0 / weights.float() verts_edges = verts_packed[edges_packed] v0, v1 = verts_edges.unbind(1) loss = ((v0 - v1).norm(dim=1, p=2) - target_length) ** 2.0 loss_vertex = loss * weights # loss_outlier = torch.topk(loss, 100)[0].mean() # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N loss_all = loss_vertex.sum() / N return loss_all def remesh(obj_path, perc, device): mesh = trimesh.load(obj_path) mesh = mesh.simplify_quadratic_decimation(50000) mesh = trimesh.smoothing.filter_humphrey( mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None ) mesh.export(obj_path.replace("recon", "remesh")) verts_pr = torch.tensor(mesh.vertices).float().unsqueeze(0).to(device) faces_pr = torch.tensor(mesh.faces).long().unsqueeze(0).to(device) return verts_pr, faces_pr def get_mask(tensor, dim): mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0 mask = mask.type_as(tensor) return mask def blend_rgb_norm(rgb, norm, mask): # [0,0,0] or [127,127,127] should be marked as mask final = rgb * (1-mask) + norm * (mask) return final.astype(np.uint8) def unwrap(image, data): img_uncrop = uncrop(np.array(Image.fromarray(image).resize(data['uncrop_param']['box_shape'][:2])), data['uncrop_param']['center'], data['uncrop_param']['scale'], data['uncrop_param']['crop_shape']) img_orig = cv2.warpAffine(img_uncrop, np.linalg.inv(data['uncrop_param']['M'])[:2, :], data['uncrop_param']['ori_shape'][::-1][1:], flags=cv2.INTER_CUBIC) return img_orig # Losses to smooth / regularize the mesh shape def update_mesh_shape_prior_losses(mesh, losses): # and (b) the edge length of the predicted mesh losses["edge"]['value'] = mesh_edge_loss(mesh) # mesh normal consistency losses["nc"]['value'] = mesh_normal_consistency(mesh) # mesh laplacian smoothing losses["laplacian"]['value'] = mesh_laplacian_smoothing( mesh, method="uniform") def rename(old_dict, old_name, new_name): new_dict = {} for key, value in zip(old_dict.keys(), old_dict.values()): new_key = key if key != old_name else new_name new_dict[new_key] = old_dict[key] return new_dict def load_checkpoint(model, cfg): model_dict = model.state_dict() main_dict = {} normal_dict = {} device = torch.device(f"cuda:{cfg['test_gpus'][0]}") main_dict = torch.load(cached_download(cfg.resume_path, use_auth_token=os.environ['ICON']), map_location=device)['state_dict'] main_dict = { k: v for k, v in main_dict.items() if k in model_dict and v.shape == model_dict[k].shape and ( 'reconEngine' not in k) and ("normal_filter" not in k) and ( 'voxelization' not in k) } print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green')) normal_dict = torch.load(cached_download(cfg.normal_path, use_auth_token=os.environ['ICON']), map_location=device)['state_dict'] for key in normal_dict.keys(): normal_dict = rename(normal_dict, key, key.replace("netG", "netG.normal_filter")) normal_dict = { k: v for k, v in normal_dict.items() if k in model_dict and v.shape == model_dict[k].shape } print(colored(f"Resume normal model from {cfg.normal_path}", 'green')) model_dict.update(main_dict) model_dict.update(normal_dict) model.load_state_dict(model_dict) model.netG = model.netG.to(device) model.reconEngine = model.reconEngine.to(device) model.netG.training = False model.netG.eval() del main_dict del normal_dict del model_dict return model def read_smpl_constants(folder): """Load smpl vertex code""" smpl_vtx_std = np.loadtxt(cached_download(os.path.join(folder, 'vertices.txt'), use_auth_token=os.environ['ICON'])) min_x = np.min(smpl_vtx_std[:, 0]) max_x = np.max(smpl_vtx_std[:, 0]) min_y = np.min(smpl_vtx_std[:, 1]) max_y = np.max(smpl_vtx_std[:, 1]) min_z = np.min(smpl_vtx_std[:, 2]) max_z = np.max(smpl_vtx_std[:, 2]) smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) """Load smpl faces & tetrahedrons""" smpl_faces = np.loadtxt(cached_download(os.path.join(folder, 'faces.txt'), use_auth_token=os.environ['ICON']), dtype=np.int32) - 1 smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] + smpl_vertex_code[smpl_faces[:, 2]]) / 3.0 smpl_tetras = np.loadtxt(cached_download(os.path.join(folder, 'tetrahedrons.txt'), use_auth_token=os.environ['ICON']), dtype=np.int32) - 1 return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras def feat_select(feat, select): # feat [B, featx2, N] # select [B, 1, N] # return [B, feat, N] dim = feat.shape[1] // 2 idx = torch.tile((1-select), (1, dim, 1))*dim + \ torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select) feat_select = torch.gather(feat, 1, idx.long()) return feat_select def get_visibility(xy, z, faces): """get the visibility of vertices Args: xy (torch.tensor): [N,2] z (torch.tensor): [N,1] faces (torch.tensor): [N,3] size (int): resolution of rendered image """ xyz = torch.cat((xy, -z), dim=1) xyz = (xyz + 1.0) / 2.0 faces = faces.long() rasterizer = Pytorch3dRasterizer(image_size=2**12) meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...]) raster_settings = rasterizer.raster_settings pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( meshes_screen, image_size=raster_settings.image_size, blur_radius=raster_settings.blur_radius, faces_per_pixel=raster_settings.faces_per_pixel, bin_size=raster_settings.bin_size, max_faces_per_bin=raster_settings.max_faces_per_bin, perspective_correct=raster_settings.perspective_correct, cull_backfaces=raster_settings.cull_backfaces, ) vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :]) vis_mask = torch.zeros(size=(z.shape[0], 1)) vis_mask[vis_vertices_id] = 1.0 # print("------------------------\n") # print(f"keep points : {vis_mask.sum()/len(vis_mask)}") return vis_mask def barycentric_coordinates_of_projection(points, vertices): ''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py ''' """Given a point, gives projected coords of that point to a triangle in barycentric coordinates. See **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf :param p: point to project. [B, 3] :param v0: first vertex of triangles. [B, 3] :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` """ #(p, q, u, v) v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] p = points q = v0 u = v1 - v0 v = v2 - v0 n = torch.cross(u, v) s = torch.sum(n * n, dim=1) # If the triangle edges are collinear, cross-product is zero, # which makes "s" 0, which gives us divide by zero. So we # make the arbitrary choice to set s to epsv (=numpy.spacing(1)), # the closest thing to zero s[s == 0] = 1e-6 oneOver4ASquared = 1.0 / s w = p - q b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) # check barycenric weights # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] return weights def cal_sdf_batch(verts, faces, cmaps, vis, points): # verts [B, N_vert, 3] # faces [B, N_face, 3] # triangles [B, N_face, 3, 3] # points [B, N_point, 3] # cmaps [B, N_vert, 3] Bsize = points.shape[0] normals = Meshes(verts, faces).verts_normals_padded() triangles = face_vertices(verts, faces) normals = face_vertices(normals, faces) cmaps = face_vertices(cmaps, faces) vis = face_vertices(vis, faces) residues, pts_ind, _ = point_to_mesh_distance(points, triangles) closest_triangles = torch.gather( triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) closest_normals = torch.gather( normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) closest_cmaps = torch.gather( cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) closest_vis = torch.gather( vis, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 1)).view(-1, 3, 1) bary_weights = barycentric_coordinates_of_projection( points.view(-1, 3), closest_triangles) pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0).clamp_(min=0.0, max=1.0) pts_vis = (closest_vis*bary_weights[:, :, None]).sum(1).unsqueeze(0).ge(1e-1) pts_norm = (closest_normals*bary_weights[:, :, None]).sum( 1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals) pts_norm = F.normalize(pts_norm, dim=2) pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3)) pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5) pts_sdf = (pts_dist * pts_signs).unsqueeze(-1) return pts_sdf.view(Bsize, -1, 1), pts_norm.view(Bsize, -1, 3), pts_cmap.view(Bsize, -1, 3), pts_vis.view(Bsize, -1, 1) def orthogonal(points, calibrations, transforms=None): ''' Compute the orthogonal projections of 3D points into the image plane by given projection matrix :param points: [B, 3, N] Tensor of 3D points :param calibrations: [B, 3, 4] Tensor of projection matrix :param transforms: [B, 2, 3] Tensor of image transform matrix :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane ''' rot = calibrations[:, :3, :3] trans = calibrations[:, :3, 3:4] pts = torch.baddbmm(trans, rot, points) # [B, 3, N] if transforms is not None: scale = transforms[:2, :2] shift = transforms[:2, 2:3] pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) return pts def projection(points, calib, format='numpy'): if format == 'tensor': return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] else: return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] def load_calib(calib_path): calib_data = np.loadtxt(calib_path, dtype=float) extrinsic = calib_data[:4, :4] intrinsic = calib_data[4:8, :4] calib_mat = np.matmul(intrinsic, extrinsic) calib_mat = torch.from_numpy(calib_mat).float() return calib_mat def load_obj_mesh_for_Hoppe(mesh_file): vertex_data = [] face_data = [] if isinstance(mesh_file, str): f = open(mesh_file, "r") else: f = mesh_file for line in f: if isinstance(line, bytes): line = line.decode("utf-8") if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = list(map(float, values[1:4])) vertex_data.append(v) elif values[0] == 'f': # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) f = list( map(lambda x: int(x.split('/')[0]), [values[3], values[4], values[1]])) face_data.append(f) # tri mesh else: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) vertices = np.array(vertex_data) faces = np.array(face_data) faces[faces > 0] -= 1 normals, _ = compute_normal(vertices, faces) return vertices, normals, faces def load_obj_mesh_with_color(mesh_file): vertex_data = [] color_data = [] face_data = [] if isinstance(mesh_file, str): f = open(mesh_file, "r") else: f = mesh_file for line in f: if isinstance(line, bytes): line = line.decode("utf-8") if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = list(map(float, values[1:4])) vertex_data.append(v) c = list(map(float, values[4:7])) color_data.append(c) elif values[0] == 'f': # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) f = list( map(lambda x: int(x.split('/')[0]), [values[3], values[4], values[1]])) face_data.append(f) # tri mesh else: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) vertices = np.array(vertex_data) colors = np.array(color_data) faces = np.array(face_data) faces[faces > 0] -= 1 return vertices, colors, faces def load_obj_mesh(mesh_file, with_normal=False, with_texture=False): vertex_data = [] norm_data = [] uv_data = [] face_data = [] face_norm_data = [] face_uv_data = [] if isinstance(mesh_file, str): f = open(mesh_file, "r") else: f = mesh_file for line in f: if isinstance(line, bytes): line = line.decode("utf-8") if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = list(map(float, values[1:4])) vertex_data.append(v) elif values[0] == 'vn': vn = list(map(float, values[1:4])) norm_data.append(vn) elif values[0] == 'vt': vt = list(map(float, values[1:3])) uv_data.append(vt) elif values[0] == 'f': # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) f = list( map(lambda x: int(x.split('/')[0]), [values[3], values[4], values[1]])) face_data.append(f) # tri mesh else: f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) face_data.append(f) # deal with texture if len(values[1].split('/')) >= 2: # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) face_uv_data.append(f) f = list( map(lambda x: int(x.split('/')[1]), [values[3], values[4], values[1]])) face_uv_data.append(f) # tri mesh elif len(values[1].split('/')[1]) != 0: f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) face_uv_data.append(f) # deal with normal if len(values[1].split('/')) == 3: # quad mesh if len(values) > 4: f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) face_norm_data.append(f) f = list( map(lambda x: int(x.split('/')[2]), [values[3], values[4], values[1]])) face_norm_data.append(f) # tri mesh elif len(values[1].split('/')[2]) != 0: f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) face_norm_data.append(f) vertices = np.array(vertex_data) faces = np.array(face_data) faces[faces > 0] -= 1 if with_texture and with_normal: uvs = np.array(uv_data) face_uvs = np.array(face_uv_data) face_uvs[face_uvs > 0] -= 1 norms = np.array(norm_data) if norms.shape[0] == 0: norms, _ = compute_normal(vertices, faces) face_normals = faces else: norms = normalize_v3(norms) face_normals = np.array(face_norm_data) face_normals[face_normals > 0] -= 1 return vertices, faces, norms, face_normals, uvs, face_uvs if with_texture: uvs = np.array(uv_data) face_uvs = np.array(face_uv_data) - 1 return vertices, faces, uvs, face_uvs if with_normal: norms = np.array(norm_data) norms = normalize_v3(norms) face_normals = np.array(face_norm_data) - 1 return vertices, faces, norms, face_normals return vertices, faces def normalize_v3(arr): ''' Normalize a numpy array of 3 component vectors shape=(n,3) ''' lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) eps = 0.00000001 lens[lens < eps] = eps arr[:, 0] /= lens arr[:, 1] /= lens arr[:, 2] /= lens return arr def compute_normal(vertices, faces): # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) # Create an indexed view into the vertex array using the array of three indices for triangles tris = vertices[faces] # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) # n is now an array of normals per triangle. The length of each normal is dependent the vertices, # we need to normalize these, so that our next step weights each normal equally. normalize_v3(face_norms) # now we have a normalized array of normals, one per triangle, i.e., per triangle normals. # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array vert_norms[faces[:, 0]] += face_norms vert_norms[faces[:, 1]] += face_norms vert_norms[faces[:, 2]] += face_norms normalize_v3(vert_norms) return vert_norms, face_norms def save_obj_mesh(mesh_path, verts, faces): file = open(mesh_path, 'w') for v in verts: file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) for f in faces: f_plus = f + 1 file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) file.close() def save_obj_mesh_with_color(mesh_path, verts, faces, colors): file = open(mesh_path, 'w') for idx, v in enumerate(verts): c = colors[idx] file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' % (v[0], v[1], v[2], c[0], c[1], c[2])) for f in faces: f_plus = f + 1 file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) file.close() def calculate_mIoU(outputs, labels): SMOOTH = 1e-6 outputs = outputs.int() labels = labels.int() intersection = ( outputs & labels).float().sum() # Will be zero if Truth=0 or Prediction=0 union = (outputs | labels).float().sum() # Will be zzero if both are 0 iou = (intersection + SMOOTH) / (union + SMOOTH ) # We smooth our devision to avoid 0/0 thresholded = torch.clamp( 20 * (iou - 0.5), 0, 10).ceil() / 10 # This is equal to comparing with thresolds return thresholded.mean().detach().cpu().numpy( ) # Or thresholded.mean() if you are interested in average across the batch def mask_filter(mask, number=1000): """only keep {number} True items within a mask Args: mask (bool array): [N, ] number (int, optional): total True item. Defaults to 1000. """ true_ids = np.where(mask)[0] keep_ids = np.random.choice(true_ids, size=number) filter_mask = np.isin(np.arange(len(mask)), keep_ids) return filter_mask def query_mesh(path): verts, faces_idx, _ = load_obj(path) return verts, faces_idx.verts_idx def add_alpha(colors, alpha=0.7): colors_pad = np.pad(colors, ((0, 0), (0, 1)), mode='constant', constant_values=alpha) return colors_pad def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'): font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") font = ImageFont.truetype(font_path, 30) grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow) grid_img = Image.fromarray( ((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8)) # add text draw = ImageDraw.Draw(grid_img) grid_size = 512 if loss is not None: draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) if type == 'smpl': for col_id, col_txt in enumerate( ['image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm', 'diff-mask']): draw.text((10+(col_id*grid_size), 5), col_txt, (255, 0, 0), font=font) elif type == 'cloth': for col_id, col_txt in enumerate( ['image', 'cloth-norm(recon)', 'cloth-norm(pred)', 'diff-norm']): draw.text((10+(col_id*grid_size), 5), col_txt, (255, 0, 0), font=font) for col_id, col_txt in enumerate( ['0', '90', '180', '270']): draw.text((10+(col_id*grid_size), grid_size*2+5), col_txt, (255, 0, 0), font=font) else: print(f"{type} should be 'smpl' or 'cloth'") grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS) return grid_img def clean_mesh(verts, faces): device = verts.device mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy()) mesh_lst = mesh_lst.split(only_watertight=False) comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst] mesh_clean = mesh_lst[comp_num.index(max(comp_num))] final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device) final_faces = torch.as_tensor(mesh_clean.faces).int().to(device) return final_verts, final_faces def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False): sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0), np.concatenate( [faces_A, faces_B + faces_A.max() + 1], axis=0), maintain_order=True, process=False) if color: colors = np.ones_like(sep_mesh.vertices) colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0]) colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0]) sep_mesh.visual.vertex_colors = colors # union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A), # trimesh.Trimesh(verts_B, faces_B)], engine='blender') return sep_mesh def mesh_move(mesh_lst, step, scale=1.0): trans = np.array([1.0, 0.0, 0.0]) * step resize_matrix = trimesh.transformations.scale_and_translate( scale=(scale), translate=trans) results = [] for mesh in mesh_lst: mesh.apply_transform(resize_matrix) results.append(mesh) return results class SMPLX(): def __init__(self): REPO_ID = "Yuliang/SMPL" self.smpl_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smpl_verts.npy', use_auth_token=os.environ['ICON']) self.smplx_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_verts.npy', use_auth_token=os.environ['ICON']) self.faces_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_faces.npy', use_auth_token=os.environ['ICON']) self.cmap_vert_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_cmap.npy', use_auth_token=os.environ['ICON']) self.faces = np.load(self.faces_path) self.verts = np.load(self.smplx_verts_path) self.smpl_verts = np.load(self.smpl_verts_path) self.model_dir = hf_hub_url(REPO_ID, filename='models') self.tedra_dir = hf_hub_url(REPO_ID, filename='tedra_data') def get_smpl_mat(self, vert_ids): mat = torch.as_tensor(np.load(self.cmap_vert_path)).float() return mat[vert_ids, :] def smpl2smplx(self, vert_ids=None): """convert vert_ids in smpl to vert_ids in smplx Args: vert_ids ([int.array]): [n, knn_num] """ smplx_tree = cKDTree(self.verts, leafsize=1) _, ind = smplx_tree.query(self.smpl_verts, k=1) # ind: [smpl_num, 1] if vert_ids is not None: smplx_vert_ids = ind[vert_ids] else: smplx_vert_ids = ind return smplx_vert_ids def smplx2smpl(self, vert_ids=None): """convert vert_ids in smplx to vert_ids in smpl Args: vert_ids ([int.array]): [n, knn_num] """ smpl_tree = cKDTree(self.smpl_verts, leafsize=1) _, ind = smpl_tree.query(self.verts, k=1) # ind: [smplx_num, 1] if vert_ids is not None: smpl_vert_ids = ind[vert_ids] else: smpl_vert_ids = ind return smpl_vert_ids