Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import logging
|
7 |
+
import json
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
import librosa
|
11 |
+
import numpy as np
|
12 |
+
import torchaudio
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
import torch
|
15 |
+
import torchvision
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from commons import sequence_mask
|
18 |
+
from hubert import hubert_model
|
19 |
+
MATPLOTLIB_FLAG = False
|
20 |
+
|
21 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
22 |
+
logger = logging
|
23 |
+
|
24 |
+
f0_bin = 256
|
25 |
+
f0_max = 1100.0
|
26 |
+
f0_min = 50.0
|
27 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
28 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
29 |
+
|
30 |
+
def f0_to_coarse(f0):
|
31 |
+
is_torch = isinstance(f0, torch.Tensor)
|
32 |
+
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
33 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
34 |
+
|
35 |
+
f0_mel[f0_mel <= 1] = 1
|
36 |
+
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
37 |
+
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
|
38 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
39 |
+
return f0_coarse
|
40 |
+
|
41 |
+
|
42 |
+
def get_hubert_model(rank=None):
|
43 |
+
|
44 |
+
hubert_soft = hubert_model.hubert_soft("hubert/hubert-soft-0d54a1f4.pt")
|
45 |
+
if rank is not None:
|
46 |
+
hubert_soft = hubert_soft.cuda(rank)
|
47 |
+
return hubert_soft
|
48 |
+
|
49 |
+
def get_hubert_content(hmodel, y=None, path=None):
|
50 |
+
if path is not None:
|
51 |
+
source, sr = torchaudio.load(path)
|
52 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
53 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
54 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
55 |
+
else:
|
56 |
+
source = y
|
57 |
+
source = source.unsqueeze(0)
|
58 |
+
with torch.inference_mode():
|
59 |
+
units = hmodel.units(source)
|
60 |
+
return units.transpose(1,2)
|
61 |
+
|
62 |
+
|
63 |
+
def get_content(cmodel, y):
|
64 |
+
with torch.no_grad():
|
65 |
+
c = cmodel.extract_features(y.squeeze(1))[0]
|
66 |
+
c = c.transpose(1, 2)
|
67 |
+
return c
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def transform(mel, height): # 68-92
|
72 |
+
#r = np.random.random()
|
73 |
+
#rate = r * 0.3 + 0.85 # 0.85-1.15
|
74 |
+
#height = int(mel.size(-2) * rate)
|
75 |
+
tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
|
76 |
+
if height >= mel.size(-2):
|
77 |
+
return tgt[:, :mel.size(-2), :]
|
78 |
+
else:
|
79 |
+
silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1)
|
80 |
+
silence += torch.randn_like(silence) / 10
|
81 |
+
return torch.cat((tgt, silence), 1)
|
82 |
+
|
83 |
+
|
84 |
+
def stretch(mel, width): # 0.5-2
|
85 |
+
return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
|
86 |
+
|
87 |
+
|
88 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
89 |
+
assert os.path.isfile(checkpoint_path)
|
90 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
91 |
+
iteration = checkpoint_dict['iteration']
|
92 |
+
learning_rate = checkpoint_dict['learning_rate']
|
93 |
+
if iteration is None:
|
94 |
+
iteration = 1
|
95 |
+
if learning_rate is None:
|
96 |
+
learning_rate = 0.0002
|
97 |
+
if optimizer is not None and checkpoint_dict['optimizer'] is not None:
|
98 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
99 |
+
saved_state_dict = checkpoint_dict['model']
|
100 |
+
if hasattr(model, 'module'):
|
101 |
+
state_dict = model.module.state_dict()
|
102 |
+
else:
|
103 |
+
state_dict = model.state_dict()
|
104 |
+
new_state_dict= {}
|
105 |
+
for k, v in state_dict.items():
|
106 |
+
try:
|
107 |
+
new_state_dict[k] = saved_state_dict[k]
|
108 |
+
except:
|
109 |
+
logger.info("%s is not in the checkpoint" % k)
|
110 |
+
new_state_dict[k] = v
|
111 |
+
if hasattr(model, 'module'):
|
112 |
+
model.module.load_state_dict(new_state_dict)
|
113 |
+
else:
|
114 |
+
model.load_state_dict(new_state_dict)
|
115 |
+
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
116 |
+
checkpoint_path, iteration))
|
117 |
+
return model, optimizer, learning_rate, iteration
|
118 |
+
|
119 |
+
|
120 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
121 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
122 |
+
iteration, checkpoint_path))
|
123 |
+
if hasattr(model, 'module'):
|
124 |
+
state_dict = model.module.state_dict()
|
125 |
+
else:
|
126 |
+
state_dict = model.state_dict()
|
127 |
+
torch.save({'model': state_dict,
|
128 |
+
'iteration': iteration,
|
129 |
+
'optimizer': optimizer.state_dict(),
|
130 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
131 |
+
clean_ckpt = False
|
132 |
+
if clean_ckpt:
|
133 |
+
clean_checkpoints(path_to_models='logs/32k/', n_ckpts_to_keep=3, sort_by_time=True)
|
134 |
+
|
135 |
+
def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
|
136 |
+
"""Freeing up space by deleting saved ckpts
|
137 |
+
|
138 |
+
Arguments:
|
139 |
+
path_to_models -- Path to the model directory
|
140 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
141 |
+
sort_by_time -- True -> chronologically delete ckpts
|
142 |
+
False -> lexicographically delete ckpts
|
143 |
+
"""
|
144 |
+
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
145 |
+
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
146 |
+
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
147 |
+
sort_key = time_key if sort_by_time else name_key
|
148 |
+
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
|
149 |
+
to_del = [os.path.join(path_to_models, fn) for fn in
|
150 |
+
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
151 |
+
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
152 |
+
del_routine = lambda x: [os.remove(x), del_info(x)]
|
153 |
+
rs = [del_routine(fn) for fn in to_del]
|
154 |
+
|
155 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
156 |
+
for k, v in scalars.items():
|
157 |
+
writer.add_scalar(k, v, global_step)
|
158 |
+
for k, v in histograms.items():
|
159 |
+
writer.add_histogram(k, v, global_step)
|
160 |
+
for k, v in images.items():
|
161 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
162 |
+
for k, v in audios.items():
|
163 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
164 |
+
|
165 |
+
|
166 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
167 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
168 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
169 |
+
x = f_list[-1]
|
170 |
+
print(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
175 |
+
global MATPLOTLIB_FLAG
|
176 |
+
if not MATPLOTLIB_FLAG:
|
177 |
+
import matplotlib
|
178 |
+
matplotlib.use("Agg")
|
179 |
+
MATPLOTLIB_FLAG = True
|
180 |
+
mpl_logger = logging.getLogger('matplotlib')
|
181 |
+
mpl_logger.setLevel(logging.WARNING)
|
182 |
+
import matplotlib.pylab as plt
|
183 |
+
import numpy as np
|
184 |
+
|
185 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
186 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
187 |
+
interpolation='none')
|
188 |
+
plt.colorbar(im, ax=ax)
|
189 |
+
plt.xlabel("Frames")
|
190 |
+
plt.ylabel("Channels")
|
191 |
+
plt.tight_layout()
|
192 |
+
|
193 |
+
fig.canvas.draw()
|
194 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
195 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
196 |
+
plt.close()
|
197 |
+
return data
|
198 |
+
|
199 |
+
|
200 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
201 |
+
global MATPLOTLIB_FLAG
|
202 |
+
if not MATPLOTLIB_FLAG:
|
203 |
+
import matplotlib
|
204 |
+
matplotlib.use("Agg")
|
205 |
+
MATPLOTLIB_FLAG = True
|
206 |
+
mpl_logger = logging.getLogger('matplotlib')
|
207 |
+
mpl_logger.setLevel(logging.WARNING)
|
208 |
+
import matplotlib.pylab as plt
|
209 |
+
import numpy as np
|
210 |
+
|
211 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
212 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
213 |
+
interpolation='none')
|
214 |
+
fig.colorbar(im, ax=ax)
|
215 |
+
xlabel = 'Decoder timestep'
|
216 |
+
if info is not None:
|
217 |
+
xlabel += '\n\n' + info
|
218 |
+
plt.xlabel(xlabel)
|
219 |
+
plt.ylabel('Encoder timestep')
|
220 |
+
plt.tight_layout()
|
221 |
+
|
222 |
+
fig.canvas.draw()
|
223 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
224 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
225 |
+
plt.close()
|
226 |
+
return data
|
227 |
+
|
228 |
+
|
229 |
+
def load_wav_to_torch(full_path):
|
230 |
+
sampling_rate, data = read(full_path)
|
231 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
232 |
+
|
233 |
+
|
234 |
+
def load_filepaths_and_text(filename, split="|"):
|
235 |
+
with open(filename, encoding='utf-8') as f:
|
236 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
237 |
+
return filepaths_and_text
|
238 |
+
|
239 |
+
|
240 |
+
def get_hparams(init=True):
|
241 |
+
parser = argparse.ArgumentParser()
|
242 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
243 |
+
help='JSON file for configuration')
|
244 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
245 |
+
help='Model name')
|
246 |
+
|
247 |
+
args = parser.parse_args()
|
248 |
+
model_dir = os.path.join("./logs", args.model)
|
249 |
+
|
250 |
+
if not os.path.exists(model_dir):
|
251 |
+
os.makedirs(model_dir)
|
252 |
+
|
253 |
+
config_path = args.config
|
254 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
255 |
+
if init:
|
256 |
+
with open(config_path, "r") as f:
|
257 |
+
data = f.read()
|
258 |
+
with open(config_save_path, "w") as f:
|
259 |
+
f.write(data)
|
260 |
+
else:
|
261 |
+
with open(config_save_path, "r") as f:
|
262 |
+
data = f.read()
|
263 |
+
config = json.loads(data)
|
264 |
+
|
265 |
+
hparams = HParams(**config)
|
266 |
+
hparams.model_dir = model_dir
|
267 |
+
return hparams
|
268 |
+
|
269 |
+
|
270 |
+
def get_hparams_from_dir(model_dir):
|
271 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
272 |
+
with open(config_save_path, "r") as f:
|
273 |
+
data = f.read()
|
274 |
+
config = json.loads(data)
|
275 |
+
|
276 |
+
hparams =HParams(**config)
|
277 |
+
hparams.model_dir = model_dir
|
278 |
+
return hparams
|
279 |
+
|
280 |
+
|
281 |
+
def get_hparams_from_file(config_path):
|
282 |
+
with open(config_path, "r") as f:
|
283 |
+
data = f.read()
|
284 |
+
config = json.loads(data)
|
285 |
+
|
286 |
+
hparams =HParams(**config)
|
287 |
+
return hparams
|
288 |
+
|
289 |
+
|
290 |
+
def check_git_hash(model_dir):
|
291 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
292 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
293 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
294 |
+
source_dir
|
295 |
+
))
|
296 |
+
return
|
297 |
+
|
298 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
299 |
+
|
300 |
+
path = os.path.join(model_dir, "githash")
|
301 |
+
if os.path.exists(path):
|
302 |
+
saved_hash = open(path).read()
|
303 |
+
if saved_hash != cur_hash:
|
304 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
305 |
+
saved_hash[:8], cur_hash[:8]))
|
306 |
+
else:
|
307 |
+
open(path, "w").write(cur_hash)
|
308 |
+
|
309 |
+
|
310 |
+
def get_logger(model_dir, filename="train.log"):
|
311 |
+
global logger
|
312 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
313 |
+
logger.setLevel(logging.DEBUG)
|
314 |
+
|
315 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
316 |
+
if not os.path.exists(model_dir):
|
317 |
+
os.makedirs(model_dir)
|
318 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
319 |
+
h.setLevel(logging.DEBUG)
|
320 |
+
h.setFormatter(formatter)
|
321 |
+
logger.addHandler(h)
|
322 |
+
return logger
|
323 |
+
|
324 |
+
|
325 |
+
class HParams():
|
326 |
+
def __init__(self, **kwargs):
|
327 |
+
for k, v in kwargs.items():
|
328 |
+
if type(v) == dict:
|
329 |
+
v = HParams(**v)
|
330 |
+
self[k] = v
|
331 |
+
|
332 |
+
def keys(self):
|
333 |
+
return self.__dict__.keys()
|
334 |
+
|
335 |
+
def items(self):
|
336 |
+
return self.__dict__.items()
|
337 |
+
|
338 |
+
def values(self):
|
339 |
+
return self.__dict__.values()
|
340 |
+
|
341 |
+
def __len__(self):
|
342 |
+
return len(self.__dict__)
|
343 |
+
|
344 |
+
def __getitem__(self, key):
|
345 |
+
return getattr(self, key)
|
346 |
+
|
347 |
+
def __setitem__(self, key, value):
|
348 |
+
return setattr(self, key, value)
|
349 |
+
|
350 |
+
def __contains__(self, key):
|
351 |
+
return key in self.__dict__
|
352 |
+
|
353 |
+
def __repr__(self):
|
354 |
+
return self.__dict__.__repr__()
|
355 |
+
|