|
import gradio as gr |
|
import os |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
import matplotlib.pyplot as plt |
|
import glob |
|
import spaces |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
original_cuda = torch.Tensor.cuda |
|
|
|
|
|
def safe_cuda(self, *args, **kwargs): |
|
if torch.cuda.is_available(): |
|
return original_cuda(self, *args, **kwargs) |
|
else: |
|
return self |
|
|
|
|
|
torch.Tensor.cuda = safe_cuda |
|
|
|
|
|
model_name = "YuukiAsuna/Vintern-1B-v2-ViTable-docvqa" |
|
|
|
|
|
model = AutoModel.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True |
|
).eval().cuda() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
|
|
|
|
def chat(message, history): |
|
print(history) |
|
print(message) |
|
if len(history) == 0 or len(message["files"]) != 0: |
|
test_image = message["files"][0] |
|
else: |
|
test_image = history[0][0][0] |
|
|
|
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5) |
|
|
|
|
|
|
|
if len(history) == 0: |
|
question = '<image>\n'+message["text"] |
|
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) |
|
else: |
|
conv_history = [] |
|
for chat_pair in history: |
|
if chat_pair[1] is not None: |
|
if len(conv_history) == 0 and len(message["files"]) == 0: |
|
chat_pair[0] = '<image>\n' + chat_pair[0] |
|
conv_history.append(tuple(chat_pair)) |
|
print(conv_history) |
|
if len(message["files"]) != 0: |
|
question = '<image>\n'+message["text"] |
|
else: |
|
question = message["text"] |
|
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True) |
|
|
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
return response |
|
|
|
CSS =""" |
|
#component-3 { |
|
height: 50dvh !important; |
|
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */ |
|
border-style: solid; |
|
overflow: hidden; |
|
flex-grow: 1; |
|
min-width: min(160px, 100%); |
|
border-width: var(--block-border-width); |
|
} |
|
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */ |
|
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv { |
|
width: 100%; |
|
object-fit: contain; |
|
height: 100%; |
|
border-radius: 13px; /* Thêm bo góc cho ảnh */ |
|
max-width: 50vw; /* Giới hạn chiều rộng ảnh */ |
|
} |
|
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */ |
|
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] { |
|
user-select: text; |
|
text-align: left; |
|
height: 300px; |
|
} |
|
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */ |
|
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img { |
|
border-radius: 13px; |
|
max-width: 50vw; |
|
} |
|
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img { |
|
margin: var(--size-2); |
|
max-height: 500px; |
|
} |
|
""" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=chat, |
|
description="""Try [Vintern-1B-v2-ViTable-docvqa](https://huggingface.co/YuukiAsuna/Vintern-1B-v2-ViTable-docvqa) in this demo. Vintern-1B-v2-ViTable-docvqa is a finetuned version of [Vintern-1B-v2](https://huggingface.co/5CD-AI/Vintern-1B-v2)""", |
|
title="Vintern-1B-v2-ViTable-docvqa", |
|
multimodal=True, |
|
css=CSS |
|
) |
|
demo.queue().launch() |
|
|
|
|
|
|
|
|
|
|