import gradio as gr import os import numpy as np import torch import torchvision.transforms as T # from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import matplotlib.pyplot as plt import glob IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # Save the original cuda() method original_cuda = torch.Tensor.cuda # Define a new cuda() method def safe_cuda(self, *args, **kwargs): if torch.cuda.is_available(): return original_cuda(self, *args, **kwargs) # Use the original cuda() method else: return self # Return the tensor itself (stays on CPU) # Monkey-patch the cuda() method torch.Tensor.cuda = safe_cuda model_name = "YuukiAsuna/Vintern-1B-v2-ViTable-docvqa" model = AutoModel.from_pretrained( model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) def Vintern_1B_v2_ViTable_docvqa(image, question, chat_history=[]): pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens= 1024, do_sample=False, num_beams = 3, repetition_penalty=2.0) # question = input("Question: ") question = '\n' + question response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') print("="*30) # Update the chat history chat_history.append((image, None)) chat_history.append((question, None)) chat_history.append((None, response)) return chat_history interface = gr.Interface( fn=Vintern_1B_v2_ViTable_docvqa, inputs=[ gr.Image(label="Upload Image", type="filepath", optional=True), # Image input gr.Textbox(label="Enter your question", optional=True), # Text input ], outputs=gr.Chatbot(label="Chat History"), # Chatbot-style output title="Vintern-1B-v2-ViTable-docvqa,", # description="A chatbot that accepts both images and text, displays images, and provides conversational responses.", allow_flagging="never", ) # Launch the chatbot interface.launch()