Yuyang2022 commited on
Commit
01b22e6
·
1 Parent(s): f5062a3

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -47
app.py DELETED
@@ -1,47 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from PIL import Image
4
- import requests
5
-
6
- import hopsworks
7
- import joblib
8
-
9
- project = hopsworks.login()
10
- fs = project.get_feature_store()
11
-
12
-
13
- mr = project.get_model_registry()
14
- model = mr.get_model("iris_modal", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/iris_model.pkl")
17
-
18
-
19
- def iris(sepal_length, sepal_width, petal_length, petal_width):
20
- input_list = []
21
- input_list.append(sepal_length)
22
- input_list.append(sepal_width)
23
- input_list.append(petal_length)
24
- input_list.append(petal_width)
25
- # 'res' is a list of predictions returned as the label.
26
- res = model.predict(np.asarray(input_list).reshape(1, -1))
27
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
- # the first element.
29
- flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
30
- img = Image.open(requests.get(flower_url, stream=True).raw)
31
- return img
32
-
33
- demo = gr.Interface(
34
- fn=iris,
35
- title="Iris Flower Predictive Analytics",
36
- description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
37
- allow_flagging="never",
38
- inputs=[
39
- gr.inputs.Number(default=1.0, label="sepal length (cm)"),
40
- gr.inputs.Number(default=1.0, label="sepal width (cm)"),
41
- gr.inputs.Number(default=1.0, label="petal length (cm)"),
42
- gr.inputs.Number(default=1.0, label="petal width (cm)"),
43
- ],
44
- outputs=gr.Image(type="pil"))
45
-
46
- demo.launch()
47
-