UDiffText / sgm /modules /attention.py
ZYMPKU's picture
v1
ed25868
raw
history blame
32 kB
import math
from inspect import isfunction
from typing import Any, Optional
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from packaging import version
from torch import nn, einsum
if version.parse(torch.__version__) >= version.parse("2.0.0"):
SDP_IS_AVAILABLE = True
from torch.backends.cuda import SDPBackend, sdp_kernel
BACKEND_MAP = {
SDPBackend.MATH: {
"enable_math": True,
"enable_flash": False,
"enable_mem_efficient": False,
},
SDPBackend.FLASH_ATTENTION: {
"enable_math": False,
"enable_flash": True,
"enable_mem_efficient": False,
},
SDPBackend.EFFICIENT_ATTENTION: {
"enable_math": False,
"enable_flash": False,
"enable_mem_efficient": True,
},
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
}
else:
from contextlib import nullcontext
SDP_IS_AVAILABLE = False
sdp_kernel = nullcontext
BACKEND_MAP = {}
print(
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
)
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
except:
XFORMERS_IS_AVAILABLE = False
print("no module 'xformers'. Processing without...")
from .diffusionmodules.util import checkpoint
def exists(val):
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
)
k = k.softmax(dim=-1)
context = torch.einsum("bhdn,bhen->bhde", k, v)
out = torch.einsum("bhde,bhdn->bhen", context, q)
out = rearrange(
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b (h w) c")
k = rearrange(k, "b c h w -> b c (h w)")
w_ = torch.einsum("bij,bjk->bik", q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, "b c h w -> b c (h w)")
w_ = rearrange(w_, "b i j -> b j i")
h_ = torch.einsum("bij,bjk->bik", v, w_)
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
h_ = self.proj_out(h_)
return x + h_
class CrossAttention(nn.Module):
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
backend=None,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = zero_module(nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
))
self.backend = backend
self.attn_map_cache = None
def forward(
self,
x,
context=None,
mask=None,
additional_tokens=None,
n_times_crossframe_attn_in_self=0,
):
h = self.heads
if additional_tokens is not None:
# get the number of masked tokens at the beginning of the output sequence
n_tokens_to_mask = additional_tokens.shape[1]
# add additional token
x = torch.cat([additional_tokens, x], dim=1)
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if n_times_crossframe_attn_in_self:
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
k = repeat(
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
)
v = repeat(
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
## old
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
del q, k
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
# save attn_map
if self.attn_map_cache is not None:
bh, n, l = sim.shape
size = int(n**0.5)
self.attn_map_cache["size"] = size
self.attn_map_cache["attn_map"] = sim
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
## new
# with sdp_kernel(**BACKEND_MAP[self.backend]):
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
# out = F.scaled_dot_product_attention(
# q, k, v, attn_mask=mask
# ) # scale is dim_head ** -0.5 per default
# del q, k, v
# out = rearrange(out, "b h n d -> b n (h d)", h=h)
if additional_tokens is not None:
# remove additional token
out = out[:, n_tokens_to_mask:]
return self.to_out(out)
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
):
super().__init__()
# print(
# f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
# f"{heads} heads with a dimension of {dim_head}."
# )
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op: Optional[Any] = None
def forward(
self,
x,
context=None,
mask=None,
additional_tokens=None,
n_times_crossframe_attn_in_self=0,
):
if additional_tokens is not None:
# get the number of masked tokens at the beginning of the output sequence
n_tokens_to_mask = additional_tokens.shape[1]
# add additional token
x = torch.cat([additional_tokens, x], dim=1)
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if n_times_crossframe_attn_in_self:
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
# n_cp = x.shape[0]//n_times_crossframe_attn_in_self
k = repeat(
k[::n_times_crossframe_attn_in_self],
"b ... -> (b n) ...",
n=n_times_crossframe_attn_in_self,
)
v = repeat(
v[::n_times_crossframe_attn_in_self],
"b ... -> (b n) ...",
n=n_times_crossframe_attn_in_self,
)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=None, op=self.attention_op
)
# TODO: Use this directly in the attention operation, as a bias
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if additional_tokens is not None:
# remove additional token
out = out[:, n_tokens_to_mask:]
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
}
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
add_context_dim=None,
gated_ff=True,
checkpoint=True,
disable_self_attn=False,
attn_mode="softmax",
sdp_backend=None,
):
super().__init__()
assert attn_mode in self.ATTENTION_MODES
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
print(
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
)
attn_mode = "softmax"
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
print(
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
)
if not XFORMERS_IS_AVAILABLE:
assert (
False
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
else:
print("Falling back to xformers efficient attention.")
attn_mode = "softmax-xformers"
attn_cls = self.ATTENTION_MODES[attn_mode]
if version.parse(torch.__version__) >= version.parse("2.0.0"):
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
else:
assert sdp_backend is None
self.disable_self_attn = disable_self_attn
self.attn1 = MemoryEfficientCrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None,
backend=sdp_backend,
) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
if context_dim is not None and context_dim > 0:
self.attn2 = attn_cls(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
backend=sdp_backend,
) # is self-attn if context is none
if add_context_dim is not None and add_context_dim > 0:
self.add_attn = attn_cls(
query_dim=dim,
context_dim=add_context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
backend=sdp_backend,
) # is self-attn if context is none
self.add_norm = nn.LayerNorm(dim)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
):
kwargs = {"x": x}
if context is not None:
kwargs.update({"context": context})
if additional_tokens is not None:
kwargs.update({"additional_tokens": additional_tokens})
if n_times_crossframe_attn_in_self:
kwargs.update(
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
)
return checkpoint(
self._forward, (x, context, add_context), self.parameters(), self.checkpoint
)
def _forward(
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
):
x = (
self.attn1(
self.norm1(x),
context=context if self.disable_self_attn else None,
additional_tokens=additional_tokens,
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
if not self.disable_self_attn
else 0,
)
+ x
)
if hasattr(self, "attn2"):
x = (
self.attn2(
self.norm2(x), context=context, additional_tokens=additional_tokens
)
+ x
)
if hasattr(self, "add_attn"):
x = (
self.add_attn(
self.add_norm(x), context=add_context, additional_tokens=additional_tokens
)
+ x
)
x = self.ff(self.norm3(x)) + x
return x
class BasicTransformerSingleLayerBlock(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
}
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
checkpoint=True,
attn_mode="softmax",
):
super().__init__()
assert attn_mode in self.ATTENTION_MODES
attn_cls = self.ATTENTION_MODES[attn_mode]
self.attn1 = attn_cls(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=context_dim,
)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(
self._forward, (x, context), self.parameters(), self.checkpoint
)
def _forward(self, x, context=None):
x = self.attn1(self.norm1(x), context=context) + x
x = self.ff(self.norm2(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
add_context_dim=None,
disable_self_attn=False,
use_linear=False,
attn_type="softmax",
use_checkpoint=True,
# sdp_backend=SDPBackend.FLASH_ATTENTION
sdp_backend=None,
):
super().__init__()
# print(
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
# )
from omegaconf import ListConfig
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
context_dim = [context_dim]
if exists(context_dim) and isinstance(context_dim, list):
if depth != len(context_dim):
# print(
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
# )
# depth does not match context dims.
assert all(
map(lambda x: x == context_dim[0], context_dim)
), "need homogenous context_dim to match depth automatically"
context_dim = depth * [context_dim[0]]
elif context_dim is None:
context_dim = [None] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
if not use_linear:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim[d],
add_context_dim=add_context_dim,
disable_self_attn=disable_self_attn,
attn_mode=attn_type,
checkpoint=use_checkpoint,
sdp_backend=sdp_backend,
)
for d in range(depth)
]
)
if not use_linear:
self.proj_out = zero_module(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
else:
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None, add_context=None):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
if i > 0 and len(context) == 1:
i = 0 # use same context for each block
x = block(x, context=context[i], add_context=add_context)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
def benchmark_attn():
# Lets define a helpful benchmarking function:
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
device = "cuda" if torch.cuda.is_available() else "cpu"
import torch.nn.functional as F
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
# Lets define the hyper-parameters of our input
batch_size = 32
max_sequence_len = 1024
num_heads = 32
embed_dimension = 32
dtype = torch.float16
query = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
key = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
value = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
# Lets explore the speed of each of the 3 implementations
from torch.backends.cuda import SDPBackend, sdp_kernel
# Helpful arguments mapper
backend_map = {
SDPBackend.MATH: {
"enable_math": True,
"enable_flash": False,
"enable_mem_efficient": False,
},
SDPBackend.FLASH_ATTENTION: {
"enable_math": False,
"enable_flash": True,
"enable_mem_efficient": False,
},
SDPBackend.EFFICIENT_ATTENTION: {
"enable_math": False,
"enable_flash": False,
"enable_mem_efficient": True,
},
}
from torch.profiler import ProfilerActivity, profile, record_function
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
print(
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("Default detailed stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
with sdp_kernel(**backend_map[SDPBackend.MATH]):
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("Math implmentation stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
try:
print(
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
except RuntimeError:
print("FlashAttention is not supported. See warnings for reasons.")
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("FlashAttention stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
try:
print(
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
except RuntimeError:
print("EfficientAttention is not supported. See warnings for reasons.")
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("EfficientAttention stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def run_model(model, x, context):
return model(x, context)
def benchmark_transformer_blocks():
device = "cuda" if torch.cuda.is_available() else "cpu"
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
checkpoint = True
compile = False
batch_size = 32
h, w = 64, 64
context_len = 77
embed_dimension = 1024
context_dim = 1024
d_head = 64
transformer_depth = 4
n_heads = embed_dimension // d_head
dtype = torch.float16
model_native = SpatialTransformer(
embed_dimension,
n_heads,
d_head,
context_dim=context_dim,
use_linear=True,
use_checkpoint=checkpoint,
attn_type="softmax",
depth=transformer_depth,
sdp_backend=SDPBackend.FLASH_ATTENTION,
).to(device)
model_efficient_attn = SpatialTransformer(
embed_dimension,
n_heads,
d_head,
context_dim=context_dim,
use_linear=True,
depth=transformer_depth,
use_checkpoint=checkpoint,
attn_type="softmax-xformers",
).to(device)
if not checkpoint and compile:
print("compiling models")
model_native = torch.compile(model_native)
model_efficient_attn = torch.compile(model_efficient_attn)
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
from torch.profiler import ProfilerActivity, profile, record_function
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
with torch.autocast("cuda"):
print(
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
)
print(
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
)
print(75 * "+")
print("NATIVE")
print(75 * "+")
torch.cuda.reset_peak_memory_stats()
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("NativeAttention stats"):
for _ in range(25):
model_native(x, c)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
print(75 * "+")
print("Xformers")
print(75 * "+")
torch.cuda.reset_peak_memory_stats()
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("xformers stats"):
for _ in range(25):
model_efficient_attn(x, c)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
def test01():
# conv1x1 vs linear
from ..util import count_params
conv = nn.Conv2d(3, 32, kernel_size=1).cuda()
print(count_params(conv))
linear = torch.nn.Linear(3, 32).cuda()
print(count_params(linear))
print(conv.weight.shape)
# use same initialization
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
linear.bias = torch.nn.Parameter(conv.bias)
print(linear.weight.shape)
x = torch.randn(11, 3, 64, 64).cuda()
xr = rearrange(x, "b c h w -> b (h w) c").contiguous()
print(xr.shape)
out_linear = linear(xr)
print(out_linear.mean(), out_linear.shape)
out_conv = conv(x)
print(out_conv.mean(), out_conv.shape)
print("done with test01.\n")
def test02():
# try cosine flash attention
import time
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
print("testing cosine flash attention...")
DIM = 1024
SEQLEN = 4096
BS = 16
print(" softmax (vanilla) first...")
model = BasicTransformerBlock(
dim=DIM,
n_heads=16,
d_head=64,
dropout=0.0,
context_dim=None,
attn_mode="softmax",
).cuda()
try:
x = torch.randn(BS, SEQLEN, DIM).cuda()
tic = time.time()
y = model(x)
toc = time.time()
print(y.shape, toc - tic)
except RuntimeError as e:
# likely oom
print(str(e))
print("\n now flash-cosine...")
model = BasicTransformerBlock(
dim=DIM,
n_heads=16,
d_head=64,
dropout=0.0,
context_dim=None,
attn_mode="flash-cosine",
).cuda()
x = torch.randn(BS, SEQLEN, DIM).cuda()
tic = time.time()
y = model(x)
toc = time.time()
print(y.shape, toc - tic)
print("done with test02.\n")
if __name__ == "__main__":
# test01()
# test02()
# test03()
# benchmark_attn()
benchmark_transformer_blocks()
print("done.")