ZYMPKU's picture
v1
ed25868
raw
history blame
26.9 kB
"""
Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
"""
from typing import Dict, Union
import imageio
import torch
import json
import numpy as np
import torch.nn.functional as F
from omegaconf import ListConfig, OmegaConf
from tqdm import tqdm
from ...modules.diffusionmodules.sampling_utils import (
get_ancestral_step,
linear_multistep_coeff,
to_d,
to_neg_log_sigma,
to_sigma,
)
from ...util import append_dims, default, instantiate_from_config
from torchvision.utils import save_image
DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"}
class BaseDiffusionSampler:
def __init__(
self,
discretization_config: Union[Dict, ListConfig, OmegaConf],
num_steps: Union[int, None] = None,
guider_config: Union[Dict, ListConfig, OmegaConf, None] = None,
verbose: bool = False,
device: str = "cuda",
):
self.num_steps = num_steps
self.discretization = instantiate_from_config(discretization_config)
self.guider = instantiate_from_config(
default(
guider_config,
DEFAULT_GUIDER,
)
)
self.verbose = verbose
self.device = device
def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
sigmas = self.discretization(
self.num_steps if num_steps is None else num_steps, device=self.device
)
uc = default(uc, cond)
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
num_sigmas = len(sigmas)
s_in = x.new_ones([x.shape[0]])
return x, s_in, sigmas, num_sigmas, cond, uc
def denoise(self, x, model, sigma, cond, uc):
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc))
denoised = self.guider(denoised, sigma)
return denoised
def get_sigma_gen(self, num_sigmas, init_step=0):
sigma_generator = range(init_step, num_sigmas - 1)
if self.verbose:
print("#" * 30, " Sampling setting ", "#" * 30)
print(f"Sampler: {self.__class__.__name__}")
print(f"Discretization: {self.discretization.__class__.__name__}")
print(f"Guider: {self.guider.__class__.__name__}")
sigma_generator = tqdm(
sigma_generator,
total=num_sigmas-1-init_step,
desc=f"Sampling with {self.__class__.__name__} for {num_sigmas-1-init_step} steps",
)
return sigma_generator
class SingleStepDiffusionSampler(BaseDiffusionSampler):
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs):
raise NotImplementedError
def euler_step(self, x, d, dt):
return x + dt * d
class EDMSampler(SingleStepDiffusionSampler):
def __init__(
self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs
):
super().__init__(*args, **kwargs)
self.s_churn = s_churn
self.s_tmin = s_tmin
self.s_tmax = s_tmax
self.s_noise = s_noise
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
sigma_hat = sigma * (gamma + 1.0)
if gamma > 0:
eps = torch.randn_like(x) * self.s_noise
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
d = to_d(x, sigma_hat, denoised)
dt = append_dims(next_sigma - sigma_hat, x.ndim)
euler_step = self.euler_step(x, d, dt)
x = self.possible_correction_step(
euler_step, x, d, dt, next_sigma, denoiser, cond, uc
)
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
for i in self.get_sigma_gen(num_sigmas):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
gamma,
)
return x
class AncestralSampler(SingleStepDiffusionSampler):
def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs):
super().__init__(*args, **kwargs)
self.eta = eta
self.s_noise = s_noise
self.noise_sampler = lambda x: torch.randn_like(x)
def ancestral_euler_step(self, x, denoised, sigma, sigma_down):
d = to_d(x, sigma, denoised)
dt = append_dims(sigma_down - sigma, x.ndim)
return self.euler_step(x, d, dt)
def ancestral_step(self, x, sigma, next_sigma, sigma_up):
x = torch.where(
append_dims(next_sigma, x.ndim) > 0.0,
x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim),
x,
)
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
for i in self.get_sigma_gen(num_sigmas):
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
)
return x
class LinearMultistepSampler(BaseDiffusionSampler):
def __init__(
self,
order=4,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.order = order
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
ds = []
sigmas_cpu = sigmas.detach().cpu().numpy()
for i in self.get_sigma_gen(num_sigmas):
sigma = s_in * sigmas[i]
denoised = denoiser(
*self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs
)
denoised = self.guider(denoised, sigma)
d = to_d(x, sigma, denoised)
ds.append(d)
if len(ds) > self.order:
ds.pop(0)
cur_order = min(i + 1, self.order)
coeffs = [
linear_multistep_coeff(cur_order, sigmas_cpu, i, j)
for j in range(cur_order)
]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
return x
class EulerEDMSampler(EDMSampler):
def possible_correction_step(
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc
):
return euler_step
def get_c_noise(self, x, model, sigma):
sigma = model.denoiser.possibly_quantize_sigma(sigma)
sigma_shape = sigma.shape
sigma = append_dims(sigma, x.ndim)
c_skip, c_out, c_in, c_noise = model.denoiser.scaling(sigma)
c_noise = model.denoiser.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
return c_noise
def attend_and_excite(self, x, model, sigma, cond, batch, alpha, iter_enabled, thres, max_iter=20):
# calc timestep
c_noise = self.get_c_noise(x, model, sigma)
x = x.clone().detach().requires_grad_(True) # https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/pipeline_attend_and_excite.py#L288
iters = 0
while True:
model_output = model.model(x, c_noise, cond)
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
grad = torch.autograd.grad(local_loss.requires_grad_(True), [x], retain_graph=True)[0]
x = x - alpha * grad
iters += 1
if not iter_enabled or local_loss <= thres or iters > max_iter:
break
return x
def create_pascal_label_colormap(self):
"""
PASCAL VOC 分割数据集的类别标签颜色映射label colormap
返回:
可视化分割结果的颜色映射Colormap
"""
colormap = np.zeros((256, 3), dtype=int)
ind = np.arange(256, dtype=int)
for shift in reversed(range(8)):
for channel in range(3):
colormap[:, channel] |= ((ind >> channel) & 1) << shift
ind >>= 3
return colormap
def save_segment_map(self, image, attn_maps, tokens=None, save_name=None):
colormap = self.create_pascal_label_colormap()
H, W = image.shape[-2:]
image_ = image*0.3
sections = []
for i in range(len(tokens)):
attn_map = attn_maps[i]
attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w
attn_map_t = torch.from_numpy(attn_map_t)
attn_map_t = F.interpolate(attn_map_t, (W, H))
color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0)
colored_attn_map = attn_map_t * color
colored_attn_map = colored_attn_map.to(device=image_.device)
image_ += colored_attn_map*0.7
sections.append(attn_map)
section = np.stack(sections)
np.save(f"temp/seg_map/seg_{save_name}.npy", section)
save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True)
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
H, W = batch["target_size_as_tuple"][0]
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
x = randn.clone()
xs = []
self.verbose = False
for _ in range(cfgs.noise_iters):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps=2
)
superv = {
"mask": batch["mask"] if "mask" in batch else None,
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
}
local_losses = []
for i in self.get_sigma_gen(num_sigmas):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
x, inter, local_loss = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
model,
x,
cond,
superv,
uc,
gamma,
save_loss=True
)
local_losses.append(local_loss.item())
xs.append((randn, local_losses[-1]))
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
x = randn.clone()
self.verbose = True
xs.sort(key = lambda x: x[-1])
if len(xs) > 0:
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
x = xs[0][0]
return x
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc=None,
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
name=None, save_loss=False, save_attn=False, save_inter=False):
sigma_hat = sigma * (gamma + 1.0)
if gamma > 0:
eps = torch.randn_like(x) * self.s_noise
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
if update:
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
denoised = self.denoise(x, model, sigma_hat, cond, uc)
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
if save_loss:
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
local_loss = local_loss[local_loss.shape[0]//2:]
else:
local_loss = torch.zeros(1)
if save_attn:
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
d = to_d(x, sigma_hat, denoised)
dt = append_dims(next_sigma - sigma_hat, x.ndim)
euler_step = self.euler_step(x, d, dt)
return euler_step, denoised_decode, local_loss
def __call__(self, model, x, cond, batch=None, uc=None, num_steps=None, init_step=0,
name=None, aae_enabled=False, detailed=False):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
name = batch["name"][0]
inters = []
local_losses = []
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
alpha = 20 * np.sqrt(scales[i])
update = aae_enabled
save_loss = detailed
save_attn = detailed and (i == (num_sigmas-1)//2)
save_inter = aae_enabled
if i in iter_lst:
iter_enabled = True
thres = thres_lst[list(iter_lst).index(i)]
else:
iter_enabled = False
thres = 0.0
x, inter, local_loss = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
model,
x,
cond,
batch,
uc,
gamma,
alpha=alpha,
iter_enabled=iter_enabled,
thres=thres,
update=update,
name=name,
save_loss=save_loss,
save_attn=save_attn,
save_inter=save_inter
)
local_losses.append(local_loss.item())
if inter is not None:
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
inters.append(inter.astype(np.uint8))
print(f"Local losses: {local_losses}")
if len(inters) > 0:
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
return x
class EulerEDMDualSampler(EulerEDMSampler):
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None):
sigmas = self.discretization(
self.num_steps if num_steps is None else num_steps, device=self.device
)
uc_1 = default(uc_1, cond)
uc_2 = default(uc_2, cond)
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
num_sigmas = len(sigmas)
s_in = x.new_ones([x.shape[0]])
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2
def denoise(self, x, model, sigma, cond, uc_1, uc_2):
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2))
denoised = self.guider(denoised, sigma)
return denoised
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None):
H, W = batch["target_size_as_tuple"][0]
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
x = randn.clone()
xs = []
self.verbose = False
for _ in range(cfgs.noise_iters):
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
x, cond, uc_1, uc_2, num_steps=2
)
superv = {
"mask": batch["mask"] if "mask" in batch else None,
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
}
local_losses = []
for i in self.get_sigma_gen(num_sigmas):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
x, inter, local_loss = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
model,
x,
cond,
superv,
uc_1,
uc_2,
gamma,
save_loss=True
)
local_losses.append(local_loss.item())
xs.append((randn, local_losses[-1]))
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
x = randn.clone()
self.verbose = True
xs.sort(key = lambda x: x[-1])
if len(xs) > 0:
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
x = xs[0][0]
return x
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None,
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
name=None, save_loss=False, save_attn=False, save_inter=False):
sigma_hat = sigma * (gamma + 1.0)
if gamma > 0:
eps = torch.randn_like(x) * self.s_noise
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
if update:
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2)
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
if save_loss:
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
local_loss = local_loss[-local_loss.shape[0]//3:]
else:
local_loss = torch.zeros(1)
if save_attn:
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True)
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
d = to_d(x, sigma_hat, denoised)
dt = append_dims(next_sigma - sigma_hat, x.ndim)
euler_step = self.euler_step(x, d, dt)
return euler_step, denoised_decode, local_loss
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0,
name=None, aae_enabled=False, detailed=False):
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
x, cond, uc_1, uc_2, num_steps
)
name = batch["name"][0]
inters = []
local_losses = []
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
if self.s_tmin <= sigmas[i] <= self.s_tmax
else 0.0
)
alpha = 20 * np.sqrt(scales[i])
update = aae_enabled
save_loss = aae_enabled
save_attn = detailed and (i == (num_sigmas-1)//2)
save_inter = aae_enabled
if i in iter_lst:
iter_enabled = True
thres = thres_lst[list(iter_lst).index(i)]
else:
iter_enabled = False
thres = 0.0
x, inter, local_loss = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
model,
x,
cond,
batch,
uc_1,
uc_2,
gamma,
alpha=alpha,
iter_enabled=iter_enabled,
thres=thres,
update=update,
name=name,
save_loss=save_loss,
save_attn=save_attn,
save_inter=save_inter
)
local_losses.append(local_loss.item())
if inter is not None:
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
inters.append(inter.astype(np.uint8))
print(f"Local losses: {local_losses}")
if len(inters) > 0:
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1)
return x
class HeunEDMSampler(EDMSampler):
def possible_correction_step(
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc
):
if torch.sum(next_sigma) < 1e-14:
# Save a network evaluation if all noise levels are 0
return euler_step
else:
denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc)
d_new = to_d(euler_step, next_sigma, denoised)
d_prime = (d + d_new) / 2.0
# apply correction if noise level is not 0
x = torch.where(
append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step
)
return x
class EulerAncestralSampler(AncestralSampler):
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc):
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
denoised = self.denoise(x, denoiser, sigma, cond, uc)
x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
return x
class DPMPP2SAncestralSampler(AncestralSampler):
def get_variables(self, sigma, sigma_down):
t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)]
h = t_next - t
s = t + 0.5 * h
return h, s, t, t_next
def get_mult(self, h, s, t, t_next):
mult1 = to_sigma(s) / to_sigma(t)
mult2 = (-0.5 * h).expm1()
mult3 = to_sigma(t_next) / to_sigma(t)
mult4 = (-h).expm1()
return mult1, mult2, mult3, mult4
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs):
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
denoised = self.denoise(x, denoiser, sigma, cond, uc)
x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
if torch.sum(sigma_down) < 1e-14:
# Save a network evaluation if all noise levels are 0
x = x_euler
else:
h, s, t, t_next = self.get_variables(sigma, sigma_down)
mult = [
append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next)
]
x2 = mult[0] * x - mult[1] * denoised
denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc)
x_dpmpp2s = mult[2] * x - mult[3] * denoised2
# apply correction if noise level is not 0
x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler)
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
return x
class DPMPP2MSampler(BaseDiffusionSampler):
def get_variables(self, sigma, next_sigma, previous_sigma=None):
t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
h = t_next - t
if previous_sigma is not None:
h_last = t - to_neg_log_sigma(previous_sigma)
r = h_last / h
return h, r, t, t_next
else:
return h, None, t, t_next
def get_mult(self, h, r, t, t_next, previous_sigma):
mult1 = to_sigma(t_next) / to_sigma(t)
mult2 = (-h).expm1()
if previous_sigma is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def sampler_step(
self,
old_denoised,
previous_sigma,
sigma,
next_sigma,
denoiser,
x,
cond,
uc=None,
):
denoised = self.denoise(x, denoiser, sigma, cond, uc)
h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
mult = [
append_dims(mult, x.ndim)
for mult in self.get_mult(h, r, t, t_next, previous_sigma)
]
x_standard = mult[0] * x - mult[1] * denoised
if old_denoised is None or torch.sum(next_sigma) < 1e-14:
# Save a network evaluation if all noise levels are 0 or on the first step
return x_standard, denoised
else:
denoised_d = mult[2] * denoised - mult[3] * old_denoised
x_advanced = mult[0] * x - mult[1] * denoised_d
# apply correction if noise level is not 0 and not first step
x = torch.where(
append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard
)
return x, denoised
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, init_step=0, **kwargs):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
old_denoised = None
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
x, old_denoised = self.sampler_step(
old_denoised,
None if i == 0 else s_in * sigmas[i - 1],
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc=uc,
)
return x