Spaces:
Paused
Paused
""" | |
Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py | |
""" | |
from typing import Dict, Union | |
import imageio | |
import torch | |
import json | |
import numpy as np | |
import torch.nn.functional as F | |
from omegaconf import ListConfig, OmegaConf | |
from tqdm import tqdm | |
from ...modules.diffusionmodules.sampling_utils import ( | |
get_ancestral_step, | |
linear_multistep_coeff, | |
to_d, | |
to_neg_log_sigma, | |
to_sigma, | |
) | |
from ...util import append_dims, default, instantiate_from_config | |
from torchvision.utils import save_image | |
DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"} | |
class BaseDiffusionSampler: | |
def __init__( | |
self, | |
discretization_config: Union[Dict, ListConfig, OmegaConf], | |
num_steps: Union[int, None] = None, | |
guider_config: Union[Dict, ListConfig, OmegaConf, None] = None, | |
verbose: bool = False, | |
device: str = "cuda", | |
): | |
self.num_steps = num_steps | |
self.discretization = instantiate_from_config(discretization_config) | |
self.guider = instantiate_from_config( | |
default( | |
guider_config, | |
DEFAULT_GUIDER, | |
) | |
) | |
self.verbose = verbose | |
self.device = device | |
def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None): | |
sigmas = self.discretization( | |
self.num_steps if num_steps is None else num_steps, device=self.device | |
) | |
uc = default(uc, cond) | |
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0) | |
num_sigmas = len(sigmas) | |
s_in = x.new_ones([x.shape[0]]) | |
return x, s_in, sigmas, num_sigmas, cond, uc | |
def denoise(self, x, model, sigma, cond, uc): | |
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc)) | |
denoised = self.guider(denoised, sigma) | |
return denoised | |
def get_sigma_gen(self, num_sigmas, init_step=0): | |
sigma_generator = range(init_step, num_sigmas - 1) | |
if self.verbose: | |
print("#" * 30, " Sampling setting ", "#" * 30) | |
print(f"Sampler: {self.__class__.__name__}") | |
print(f"Discretization: {self.discretization.__class__.__name__}") | |
print(f"Guider: {self.guider.__class__.__name__}") | |
sigma_generator = tqdm( | |
sigma_generator, | |
total=num_sigmas-1-init_step, | |
desc=f"Sampling with {self.__class__.__name__} for {num_sigmas-1-init_step} steps", | |
) | |
return sigma_generator | |
class SingleStepDiffusionSampler(BaseDiffusionSampler): | |
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs): | |
raise NotImplementedError | |
def euler_step(self, x, d, dt): | |
return x + dt * d | |
class EDMSampler(SingleStepDiffusionSampler): | |
def __init__( | |
self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.s_churn = s_churn | |
self.s_tmin = s_tmin | |
self.s_tmax = s_tmax | |
self.s_noise = s_noise | |
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0): | |
sigma_hat = sigma * (gamma + 1.0) | |
if gamma > 0: | |
eps = torch.randn_like(x) * self.s_noise | |
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 | |
denoised = self.denoise(x, denoiser, sigma_hat, cond, uc) | |
d = to_d(x, sigma_hat, denoised) | |
dt = append_dims(next_sigma - sigma_hat, x.ndim) | |
euler_step = self.euler_step(x, d, dt) | |
x = self.possible_correction_step( | |
euler_step, x, d, dt, next_sigma, denoiser, cond, uc | |
) | |
return x | |
def __call__(self, denoiser, x, cond, uc=None, num_steps=None): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps | |
) | |
for i in self.get_sigma_gen(num_sigmas): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
x = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
denoiser, | |
x, | |
cond, | |
uc, | |
gamma, | |
) | |
return x | |
class AncestralSampler(SingleStepDiffusionSampler): | |
def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.eta = eta | |
self.s_noise = s_noise | |
self.noise_sampler = lambda x: torch.randn_like(x) | |
def ancestral_euler_step(self, x, denoised, sigma, sigma_down): | |
d = to_d(x, sigma, denoised) | |
dt = append_dims(sigma_down - sigma, x.ndim) | |
return self.euler_step(x, d, dt) | |
def ancestral_step(self, x, sigma, next_sigma, sigma_up): | |
x = torch.where( | |
append_dims(next_sigma, x.ndim) > 0.0, | |
x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim), | |
x, | |
) | |
return x | |
def __call__(self, denoiser, x, cond, uc=None, num_steps=None): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps | |
) | |
for i in self.get_sigma_gen(num_sigmas): | |
x = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
denoiser, | |
x, | |
cond, | |
uc, | |
) | |
return x | |
class LinearMultistepSampler(BaseDiffusionSampler): | |
def __init__( | |
self, | |
order=4, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.order = order | |
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps | |
) | |
ds = [] | |
sigmas_cpu = sigmas.detach().cpu().numpy() | |
for i in self.get_sigma_gen(num_sigmas): | |
sigma = s_in * sigmas[i] | |
denoised = denoiser( | |
*self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs | |
) | |
denoised = self.guider(denoised, sigma) | |
d = to_d(x, sigma, denoised) | |
ds.append(d) | |
if len(ds) > self.order: | |
ds.pop(0) | |
cur_order = min(i + 1, self.order) | |
coeffs = [ | |
linear_multistep_coeff(cur_order, sigmas_cpu, i, j) | |
for j in range(cur_order) | |
] | |
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) | |
return x | |
class EulerEDMSampler(EDMSampler): | |
def possible_correction_step( | |
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc | |
): | |
return euler_step | |
def get_c_noise(self, x, model, sigma): | |
sigma = model.denoiser.possibly_quantize_sigma(sigma) | |
sigma_shape = sigma.shape | |
sigma = append_dims(sigma, x.ndim) | |
c_skip, c_out, c_in, c_noise = model.denoiser.scaling(sigma) | |
c_noise = model.denoiser.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) | |
return c_noise | |
def attend_and_excite(self, x, model, sigma, cond, batch, alpha, iter_enabled, thres, max_iter=20): | |
# calc timestep | |
c_noise = self.get_c_noise(x, model, sigma) | |
x = x.clone().detach().requires_grad_(True) # https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/pipeline_attend_and_excite.py#L288 | |
iters = 0 | |
while True: | |
model_output = model.model(x, c_noise, cond) | |
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) | |
grad = torch.autograd.grad(local_loss.requires_grad_(True), [x], retain_graph=True)[0] | |
x = x - alpha * grad | |
iters += 1 | |
if not iter_enabled or local_loss <= thres or iters > max_iter: | |
break | |
return x | |
def create_pascal_label_colormap(self): | |
""" | |
PASCAL VOC 分割数据集的类别标签颜色映射label colormap | |
返回: | |
可视化分割结果的颜色映射Colormap | |
""" | |
colormap = np.zeros((256, 3), dtype=int) | |
ind = np.arange(256, dtype=int) | |
for shift in reversed(range(8)): | |
for channel in range(3): | |
colormap[:, channel] |= ((ind >> channel) & 1) << shift | |
ind >>= 3 | |
return colormap | |
def save_segment_map(self, image, attn_maps, tokens=None, save_name=None): | |
colormap = self.create_pascal_label_colormap() | |
H, W = image.shape[-2:] | |
image_ = image*0.3 | |
sections = [] | |
for i in range(len(tokens)): | |
attn_map = attn_maps[i] | |
attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w | |
attn_map_t = torch.from_numpy(attn_map_t) | |
attn_map_t = F.interpolate(attn_map_t, (W, H)) | |
color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0) | |
colored_attn_map = attn_map_t * color | |
colored_attn_map = colored_attn_map.to(device=image_.device) | |
image_ += colored_attn_map*0.7 | |
sections.append(attn_map) | |
section = np.stack(sections) | |
np.save(f"temp/seg_map/seg_{save_name}.npy", section) | |
save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True) | |
def get_init_noise(self, cfgs, model, cond, batch, uc=None): | |
H, W = batch["target_size_as_tuple"][0] | |
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor) | |
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) | |
x = randn.clone() | |
xs = [] | |
self.verbose = False | |
for _ in range(cfgs.noise_iters): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps=2 | |
) | |
superv = { | |
"mask": batch["mask"] if "mask" in batch else None, | |
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None | |
} | |
local_losses = [] | |
for i in self.get_sigma_gen(num_sigmas): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
x, inter, local_loss = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
model, | |
x, | |
cond, | |
superv, | |
uc, | |
gamma, | |
save_loss=True | |
) | |
local_losses.append(local_loss.item()) | |
xs.append((randn, local_losses[-1])) | |
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) | |
x = randn.clone() | |
self.verbose = True | |
xs.sort(key = lambda x: x[-1]) | |
if len(xs) > 0: | |
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}") | |
x = xs[0][0] | |
return x | |
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc=None, | |
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False, | |
name=None, save_loss=False, save_attn=False, save_inter=False): | |
sigma_hat = sigma * (gamma + 1.0) | |
if gamma > 0: | |
eps = torch.randn_like(x) * self.s_noise | |
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 | |
if update: | |
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres) | |
denoised = self.denoise(x, model, sigma_hat, cond, uc) | |
denoised_decode = model.decode_first_stage(denoised) if save_inter else None | |
if save_loss: | |
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) | |
local_loss = local_loss[local_loss.shape[0]//2:] | |
else: | |
local_loss = torch.zeros(1) | |
if save_attn: | |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0]) | |
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode | |
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name) | |
d = to_d(x, sigma_hat, denoised) | |
dt = append_dims(next_sigma - sigma_hat, x.ndim) | |
euler_step = self.euler_step(x, d, dt) | |
return euler_step, denoised_decode, local_loss | |
def __call__(self, model, x, cond, batch=None, uc=None, num_steps=None, init_step=0, | |
name=None, aae_enabled=False, detailed=False): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps | |
) | |
name = batch["name"][0] | |
inters = [] | |
local_losses = [] | |
scales = np.linspace(start=1.0, stop=0, num=num_sigmas) | |
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32) | |
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6) | |
for i in self.get_sigma_gen(num_sigmas, init_step=init_step): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
alpha = 20 * np.sqrt(scales[i]) | |
update = aae_enabled | |
save_loss = detailed | |
save_attn = detailed and (i == (num_sigmas-1)//2) | |
save_inter = aae_enabled | |
if i in iter_lst: | |
iter_enabled = True | |
thres = thres_lst[list(iter_lst).index(i)] | |
else: | |
iter_enabled = False | |
thres = 0.0 | |
x, inter, local_loss = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
model, | |
x, | |
cond, | |
batch, | |
uc, | |
gamma, | |
alpha=alpha, | |
iter_enabled=iter_enabled, | |
thres=thres, | |
update=update, | |
name=name, | |
save_loss=save_loss, | |
save_attn=save_attn, | |
save_inter=save_inter | |
) | |
local_losses.append(local_loss.item()) | |
if inter is not None: | |
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0] | |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255 | |
inters.append(inter.astype(np.uint8)) | |
print(f"Local losses: {local_losses}") | |
if len(inters) > 0: | |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02) | |
return x | |
class EulerEDMDualSampler(EulerEDMSampler): | |
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None): | |
sigmas = self.discretization( | |
self.num_steps if num_steps is None else num_steps, device=self.device | |
) | |
uc_1 = default(uc_1, cond) | |
uc_2 = default(uc_2, cond) | |
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0) | |
num_sigmas = len(sigmas) | |
s_in = x.new_ones([x.shape[0]]) | |
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 | |
def denoise(self, x, model, sigma, cond, uc_1, uc_2): | |
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2)) | |
denoised = self.guider(denoised, sigma) | |
return denoised | |
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None): | |
H, W = batch["target_size_as_tuple"][0] | |
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor) | |
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) | |
x = randn.clone() | |
xs = [] | |
self.verbose = False | |
for _ in range(cfgs.noise_iters): | |
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop( | |
x, cond, uc_1, uc_2, num_steps=2 | |
) | |
superv = { | |
"mask": batch["mask"] if "mask" in batch else None, | |
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None | |
} | |
local_losses = [] | |
for i in self.get_sigma_gen(num_sigmas): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
x, inter, local_loss = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
model, | |
x, | |
cond, | |
superv, | |
uc_1, | |
uc_2, | |
gamma, | |
save_loss=True | |
) | |
local_losses.append(local_loss.item()) | |
xs.append((randn, local_losses[-1])) | |
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) | |
x = randn.clone() | |
self.verbose = True | |
xs.sort(key = lambda x: x[-1]) | |
if len(xs) > 0: | |
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}") | |
x = xs[0][0] | |
return x | |
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None, | |
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False, | |
name=None, save_loss=False, save_attn=False, save_inter=False): | |
sigma_hat = sigma * (gamma + 1.0) | |
if gamma > 0: | |
eps = torch.randn_like(x) * self.s_noise | |
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 | |
if update: | |
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres) | |
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2) | |
denoised_decode = model.decode_first_stage(denoised) if save_inter else None | |
if save_loss: | |
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) | |
local_loss = local_loss[-local_loss.shape[0]//3:] | |
else: | |
local_loss = torch.zeros(1) | |
if save_attn: | |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True) | |
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode | |
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name) | |
d = to_d(x, sigma_hat, denoised) | |
dt = append_dims(next_sigma - sigma_hat, x.ndim) | |
euler_step = self.euler_step(x, d, dt) | |
return euler_step, denoised_decode, local_loss | |
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0, | |
name=None, aae_enabled=False, detailed=False): | |
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop( | |
x, cond, uc_1, uc_2, num_steps | |
) | |
name = batch["name"][0] | |
inters = [] | |
local_losses = [] | |
scales = np.linspace(start=1.0, stop=0, num=num_sigmas) | |
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32) | |
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6) | |
for i in self.get_sigma_gen(num_sigmas, init_step=init_step): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
alpha = 20 * np.sqrt(scales[i]) | |
update = aae_enabled | |
save_loss = aae_enabled | |
save_attn = detailed and (i == (num_sigmas-1)//2) | |
save_inter = aae_enabled | |
if i in iter_lst: | |
iter_enabled = True | |
thres = thres_lst[list(iter_lst).index(i)] | |
else: | |
iter_enabled = False | |
thres = 0.0 | |
x, inter, local_loss = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
model, | |
x, | |
cond, | |
batch, | |
uc_1, | |
uc_2, | |
gamma, | |
alpha=alpha, | |
iter_enabled=iter_enabled, | |
thres=thres, | |
update=update, | |
name=name, | |
save_loss=save_loss, | |
save_attn=save_attn, | |
save_inter=save_inter | |
) | |
local_losses.append(local_loss.item()) | |
if inter is not None: | |
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0] | |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255 | |
inters.append(inter.astype(np.uint8)) | |
print(f"Local losses: {local_losses}") | |
if len(inters) > 0: | |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1) | |
return x | |
class HeunEDMSampler(EDMSampler): | |
def possible_correction_step( | |
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc | |
): | |
if torch.sum(next_sigma) < 1e-14: | |
# Save a network evaluation if all noise levels are 0 | |
return euler_step | |
else: | |
denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc) | |
d_new = to_d(euler_step, next_sigma, denoised) | |
d_prime = (d + d_new) / 2.0 | |
# apply correction if noise level is not 0 | |
x = torch.where( | |
append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step | |
) | |
return x | |
class EulerAncestralSampler(AncestralSampler): | |
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc): | |
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta) | |
denoised = self.denoise(x, denoiser, sigma, cond, uc) | |
x = self.ancestral_euler_step(x, denoised, sigma, sigma_down) | |
x = self.ancestral_step(x, sigma, next_sigma, sigma_up) | |
return x | |
class DPMPP2SAncestralSampler(AncestralSampler): | |
def get_variables(self, sigma, sigma_down): | |
t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)] | |
h = t_next - t | |
s = t + 0.5 * h | |
return h, s, t, t_next | |
def get_mult(self, h, s, t, t_next): | |
mult1 = to_sigma(s) / to_sigma(t) | |
mult2 = (-0.5 * h).expm1() | |
mult3 = to_sigma(t_next) / to_sigma(t) | |
mult4 = (-h).expm1() | |
return mult1, mult2, mult3, mult4 | |
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs): | |
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta) | |
denoised = self.denoise(x, denoiser, sigma, cond, uc) | |
x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down) | |
if torch.sum(sigma_down) < 1e-14: | |
# Save a network evaluation if all noise levels are 0 | |
x = x_euler | |
else: | |
h, s, t, t_next = self.get_variables(sigma, sigma_down) | |
mult = [ | |
append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next) | |
] | |
x2 = mult[0] * x - mult[1] * denoised | |
denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc) | |
x_dpmpp2s = mult[2] * x - mult[3] * denoised2 | |
# apply correction if noise level is not 0 | |
x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler) | |
x = self.ancestral_step(x, sigma, next_sigma, sigma_up) | |
return x | |
class DPMPP2MSampler(BaseDiffusionSampler): | |
def get_variables(self, sigma, next_sigma, previous_sigma=None): | |
t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)] | |
h = t_next - t | |
if previous_sigma is not None: | |
h_last = t - to_neg_log_sigma(previous_sigma) | |
r = h_last / h | |
return h, r, t, t_next | |
else: | |
return h, None, t, t_next | |
def get_mult(self, h, r, t, t_next, previous_sigma): | |
mult1 = to_sigma(t_next) / to_sigma(t) | |
mult2 = (-h).expm1() | |
if previous_sigma is not None: | |
mult3 = 1 + 1 / (2 * r) | |
mult4 = 1 / (2 * r) | |
return mult1, mult2, mult3, mult4 | |
else: | |
return mult1, mult2 | |
def sampler_step( | |
self, | |
old_denoised, | |
previous_sigma, | |
sigma, | |
next_sigma, | |
denoiser, | |
x, | |
cond, | |
uc=None, | |
): | |
denoised = self.denoise(x, denoiser, sigma, cond, uc) | |
h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma) | |
mult = [ | |
append_dims(mult, x.ndim) | |
for mult in self.get_mult(h, r, t, t_next, previous_sigma) | |
] | |
x_standard = mult[0] * x - mult[1] * denoised | |
if old_denoised is None or torch.sum(next_sigma) < 1e-14: | |
# Save a network evaluation if all noise levels are 0 or on the first step | |
return x_standard, denoised | |
else: | |
denoised_d = mult[2] * denoised - mult[3] * old_denoised | |
x_advanced = mult[0] * x - mult[1] * denoised_d | |
# apply correction if noise level is not 0 and not first step | |
x = torch.where( | |
append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard | |
) | |
return x, denoised | |
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, init_step=0, **kwargs): | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, cond, uc, num_steps | |
) | |
old_denoised = None | |
for i in self.get_sigma_gen(num_sigmas, init_step=init_step): | |
x, old_denoised = self.sampler_step( | |
old_denoised, | |
None if i == 0 else s_in * sigmas[i - 1], | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
denoiser, | |
x, | |
cond, | |
uc=uc, | |
) | |
return x | |