File size: 12,619 Bytes
6f4dba4
a9e6ec2
6f4dba4
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e6ec2
 
 
 
 
6f4dba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
 
 
 
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
 
 
a9e6ec2
6f4dba4
 
 
 
a9e6ec2
6f4dba4
 
 
 
 
a9e6ec2
6f4dba4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")

model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2",
        trust_remote_code=True).to("cuda")

BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]

@spaces.GPU
def model_inference(
    images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"


    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p


    generation_args.update(inputs)

    # Generate
    generated_ids = model.generate(**generation_args)

    generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]


with gr.Blocks(fill_height=True) as demo:
    gr.Markdown("## IDEFICS3-Llama 🐶")
    gr.Markdown("Play with [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) in this demo. To get started, upload an image and text or try one of the examples.")
    gr.Markdown("**Disclaimer:** Idefics3 does not include an RLHF alignment stage, so it may not consistently follow prompts or handle complex tasks. However, this doesn't mean it is incapable of doing so. Adding a prefix to the assistant's response, such as Let's think step for a reasoning question or `<html>` for HTML code generation, can significantly improve the output in practice. You could also play with the parameters such as the temperature in non-greedy mode.")
    with gr.Column():
        image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
        query_input = gr.Textbox(label="Prompt")
        assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")

        submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

    with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
        examples=[
                    ["example_images/mmmu_example.jpeg", "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?", "Let's think step by step.", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/rococo_1.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/paper_with_text.png", "Read what's written on the paper", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/dragons_playing.png","What's unusual about this image?",None,  "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/example_images_ai2d_example_2.jpeg", "What happens to fish if pelicans increase?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/dummy_pdf.png", "How much percent is the order status?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",None,  "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/s2w_example.png",  "What is this UI about?", None,"Greedy", 0.4, 512, 1.2, 0.8]]

        # Hyper-parameters for generation
        max_new_tokens = gr.Slider(
              minimum=8,
              maximum=1024,
              value=512,
              step=1,
              interactive=True,
              label="Maximum number of new tokens to generate",
          )
        repetition_penalty = gr.Slider(
              minimum=0.01,
              maximum=5.0,
              value=1.2,
              step=0.01,
              interactive=True,
              label="Repetition penalty",
              info="1.0 is equivalent to no penalty",
          )
        temperature = gr.Slider(
              minimum=0.0,
              maximum=5.0,
              value=0.4,
              step=0.1,
              interactive=True,
              label="Sampling temperature",
              info="Higher values will produce more diverse outputs.",
          )
        top_p = gr.Slider(
              minimum=0.01,
              maximum=0.99,
              value=0.8,
              step=0.01,
              interactive=True,
              label="Top P",
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy = gr.Radio(
              [
                  "Greedy",
                  "Top P Sampling",
              ],
              value="Greedy",
              label="Decoding strategy",
              interactive=True,
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=temperature,
          )

        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=repetition_penalty,
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
              inputs=decoding_strategy,
              outputs=top_p,
          )
        gr.Examples(
                        examples = examples,
                        inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                              max_new_tokens, repetition_penalty, top_p],
                        outputs=output,
                        fn=model_inference
                    )

        submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)


demo.launch(debug=True)

















# -----------------------------------------------------------------------------------------------------------------------------
# import gradio as gr
# import numpy as np
# import random
# from diffusers import DiffusionPipeline
# import torch

# device = "cuda" if torch.cuda.is_available() else "cpu"

# if torch.cuda.is_available():
#     torch.cuda.max_memory_allocated(device=device)
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
#     pipe.enable_xformers_memory_efficient_attention()
#     pipe = pipe.to(device)
# else: 
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
#     pipe = pipe.to(device)

# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024

# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)
        
#     generator = torch.Generator().manual_seed(seed)
    
#     image = pipe(
#         prompt = prompt, 
#         negative_prompt = negative_prompt,
#         guidance_scale = guidance_scale, 
#         num_inference_steps = num_inference_steps, 
#         width = width, 
#         height = height,
#         generator = generator
#     ).images[0] 
    
#     return image

# examples = [
#     "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
#     "An astronaut riding a green horse",
#     "A delicious ceviche cheesecake slice",
# ]

# css="""
# #col-container {
#     margin: 0 auto;
#     max-width: 520px;
# }
# """

# if torch.cuda.is_available():
#     power_device = "GPU"
# else:
#     power_device = "CPU"

# with gr.Blocks(css=css) as demo:
    
#     with gr.Column(elem_id="col-container"):
#         gr.Markdown(f"""
#         # Text-to-Image Gradio Template
#         Currently running on {power_device}.
#         """)
        
#         with gr.Row():
            
#             prompt = gr.Text(
#                 label="Prompt",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt",
#                 container=False,
#             )
            
#             run_button = gr.Button("Run", scale=0)
        
#         result = gr.Image(label="Result", show_label=False)

#         with gr.Accordion("Advanced Settings", open=False):
            
#             negative_prompt = gr.Text(
#                 label="Negative prompt",
#                 max_lines=1,
#                 placeholder="Enter a negative prompt",
#                 visible=False,
#             )
            
#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=0,
#             )
            
#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
#             with gr.Row():
                
#                 width = gr.Slider(
#                     label="Width",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=512,
#                 )
                
#                 height = gr.Slider(
#                     label="Height",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=512,
#                 )
            
#             with gr.Row():
                
#                 guidance_scale = gr.Slider(
#                     label="Guidance scale",
#                     minimum=0.0,
#                     maximum=10.0,
#                     step=0.1,
#                     value=0.0,
#                 )
                
#                 num_inference_steps = gr.Slider(
#                     label="Number of inference steps",
#                     minimum=1,
#                     maximum=12,
#                     step=1,
#                     value=2,
#                 )
        
#         gr.Examples(
#             examples = examples,
#             inputs = [prompt]
#         )

#     run_button.click(
#         fn = infer,
#         inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
#         outputs = [result]
#     )

# demo.queue().launch()