Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, Idefics3ForConditionalGeneration | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3") | |
model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", | |
torch_dtype=torch.bfloat16, | |
#_attn_implementation="flash_attention_2", | |
trust_remote_code=True)#.to("cuda") | |
BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids | |
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id] | |
# @spaces.GPU | |
def model_inference( | |
images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens, | |
repetition_penalty, top_p | |
): | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the image(s).") | |
if isinstance(images, Image.Image): | |
images = [images] | |
resulting_messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "image"}] + [ | |
{"type": "text", "text": text} | |
] | |
} | |
] | |
if assistant_prefix: | |
text = f"{assistant_prefix} {text}" | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
# inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
inputs = {k: v for k, v in inputs.items()} | |
generation_args = { | |
"max_new_tokens": max_new_tokens, | |
"repetition_penalty": repetition_penalty, | |
} | |
assert decoding_strategy in [ | |
"Greedy", | |
"Top P Sampling", | |
] | |
if decoding_strategy == "Greedy": | |
generation_args["do_sample"] = False | |
elif decoding_strategy == "Top P Sampling": | |
generation_args["temperature"] = temperature | |
generation_args["do_sample"] = True | |
generation_args["top_p"] = top_p | |
generation_args.update(inputs) | |
# Generate | |
generated_ids = model.generate(**generation_args) | |
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True) | |
return generated_texts[0] | |
with gr.Blocks(fill_height=True) as demo: | |
gr.Markdown("## IDEFICS3-Llama 🐶") | |
gr.Markdown("Play with [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) in this demo. To get started, upload an image and text or try one of the examples.") | |
gr.Markdown("**Disclaimer:** Idefics3 does not include an RLHF alignment stage, so it may not consistently follow prompts or handle complex tasks. However, this doesn't mean it is incapable of doing so. Adding a prefix to the assistant's response, such as Let's think step for a reasoning question or `<html>` for HTML code generation, can significantly improve the output in practice. You could also play with the parameters such as the temperature in non-greedy mode.") | |
with gr.Column(): | |
image_input = gr.Image(label="Upload your Image", type="pil", scale=1) | |
query_input = gr.Textbox(label="Prompt") | |
assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.") | |
submit_btn = gr.Button("Submit") | |
output = gr.Textbox(label="Output") | |
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"): | |
# examples=[ | |
# ["example_images/mmmu_example.jpeg", "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?", "Let's think step by step.", "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/rococo_1.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/paper_with_text.png", "Read what's written on the paper", None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/dragons_playing.png","What's unusual about this image?",None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/example_images_ai2d_example_2.jpeg", "What happens to fish if pelicans increase?", None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/dummy_pdf.png", "How much percent is the order status?", None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",None, "Greedy", 0.4, 512, 1.2, 0.8], | |
# ["example_images/s2w_example.png", "What is this UI about?", None,"Greedy", 0.4, 512, 1.2, 0.8]] | |
# Hyper-parameters for generation | |
max_new_tokens = gr.Slider( | |
minimum=8, | |
maximum=1024, | |
value=512, | |
step=1, | |
interactive=True, | |
label="Maximum number of new tokens to generate", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0.01, | |
maximum=5.0, | |
value=1.2, | |
step=0.01, | |
interactive=True, | |
label="Repetition penalty", | |
info="1.0 is equivalent to no penalty", | |
) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=5.0, | |
value=0.4, | |
step=0.1, | |
interactive=True, | |
label="Sampling temperature", | |
info="Higher values will produce more diverse outputs.", | |
) | |
top_p = gr.Slider( | |
minimum=0.01, | |
maximum=0.99, | |
value=0.8, | |
step=0.01, | |
interactive=True, | |
label="Top P", | |
info="Higher values is equivalent to sampling more low-probability tokens.", | |
) | |
decoding_strategy = gr.Radio( | |
[ | |
"Greedy", | |
"Top P Sampling", | |
], | |
value="Greedy", | |
label="Decoding strategy", | |
interactive=True, | |
info="Higher values is equivalent to sampling more low-probability tokens.", | |
) | |
decoding_strategy.change( | |
fn=lambda selection: gr.Slider( | |
visible=( | |
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"] | |
) | |
), | |
inputs=decoding_strategy, | |
outputs=temperature, | |
) | |
decoding_strategy.change( | |
fn=lambda selection: gr.Slider( | |
visible=( | |
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"] | |
) | |
), | |
inputs=decoding_strategy, | |
outputs=repetition_penalty, | |
) | |
decoding_strategy.change( | |
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])), | |
inputs=decoding_strategy, | |
outputs=top_p, | |
) | |
# gr.Examples( | |
# examples = examples, | |
# inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature, | |
# max_new_tokens, repetition_penalty, top_p], | |
# outputs=output, | |
# fn=model_inference | |
# ) | |
submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature, | |
max_new_tokens, repetition_penalty, top_p], outputs=output) | |
demo.launch(debug=True) | |
# ----------------------------------------------------------------------------------------------------------------------------- | |
# import gradio as gr | |
# import numpy as np | |
# import random | |
# from diffusers import DiffusionPipeline | |
# import torch | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# if torch.cuda.is_available(): | |
# torch.cuda.max_memory_allocated(device=device) | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
# pipe.enable_xformers_memory_efficient_attention() | |
# pipe = pipe.to(device) | |
# else: | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
# pipe = pipe.to(device) | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt = prompt, | |
# negative_prompt = negative_prompt, | |
# guidance_scale = guidance_scale, | |
# num_inference_steps = num_inference_steps, | |
# width = width, | |
# height = height, | |
# generator = generator | |
# ).images[0] | |
# return image | |
# examples = [ | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
# "An astronaut riding a green horse", | |
# "A delicious ceviche cheesecake slice", | |
# ] | |
# css=""" | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 520px; | |
# } | |
# """ | |
# if torch.cuda.is_available(): | |
# power_device = "GPU" | |
# else: | |
# power_device = "CPU" | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f""" | |
# # Text-to-Image Gradio Template | |
# Currently running on {power_device}. | |
# """) | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0) | |
# result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=12, | |
# step=1, | |
# value=2, | |
# ) | |
# gr.Examples( | |
# examples = examples, | |
# inputs = [prompt] | |
# ) | |
# run_button.click( | |
# fn = infer, | |
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
# outputs = [result] | |
# ) | |
# demo.queue().launch() |