Spaces:
Runtime error
Runtime error
File size: 4,570 Bytes
26adeef 7181cca 4e22254 c006a72 b8adfc6 4e22254 3b53056 4e22254 3b53056 4e22254 6e66249 c006a72 7181cca 4e22254 3b53056 4e22254 3b53056 4e22254 7181cca 4e22254 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
os.system("pip install pymongo")
from collections import defaultdict
from database import save_response
import gradio as gr
import pandas as pd
import random
css = """
.rtl{
text-align: right;
}
.selectize-dropdown, .selectize-input {
direction: rtl !important;
}
"""
file_path = 'instructions/merged.json'
df = pd.read_json(file_path, orient='records', lines=False)
# that keeps track of how many times each question has been used
question_count = {index: 0 for index in df.index}
model_rankings = defaultdict(lambda: {'1st': 0, '2nd': 0, '3rd': 0})
def get_rank_suffix(rank):
if 11 <= rank <= 13:
return 'th'
else:
suffixes = {1: 'st', 2: 'nd', 3: 'rd'}
return suffixes.get(rank % 10, 'th')
def process_rankings(user_rankings):
print("Processing Rankings:", user_rankings) # Debugging print
for answer_id, rank in user_rankings:
model = answer_id.split('_')[0] # Extracting the model name from the answer_id
rank_suffix = get_rank_suffix(rank)
model_rankings[model][f'{rank}{rank_suffix}'] += 1 # Using the correct suffix based on the rank
model_rankings_dict = dict(model_rankings)
save_response(model_rankings_dict)
print("Updated Model Rankings:", model_rankings) # Debugging print
return
def get_questions_and_answers():
available_questions = [index for index, count in question_count.items() if count < 3]
selected_indexes = random.sample(available_questions, min(4, len(available_questions)))
for index in selected_indexes:
question_count[index] += 1
questions_and_answers = []
for index in selected_indexes:
question = df.loc[index, 'instruction']
answers_with_models = [
(df.loc[index, 'cidar_output'], 'CIDAR'),
(df.loc[index, 'chat_output'], 'CHAT'),
(df.loc[index, 'alpagasus_output'], 'ALPAGASUS')
]
random.shuffle(answers_with_models) # Shuffle answers with their IDs
questions_and_answers.append((question, answers_with_models))
return questions_and_answers
def rank_interface():
questions = get_questions_and_answers()
# Create three dropdowns for each question for 1st, 2nd, and 3rd choices
inputs = []
for question, answers in questions:
# Use an HTML component to display the question
inputs.append(gr.Markdown(rtl=True, value= question))
answers_text = [answer for answer, _ in answers]
# Append three dropdowns for rankings without repeating the question
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الأول"))
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثاني"))
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثالث"))
outputs = gr.Textbox(elem_id="rtl_text")
def rank_fluency(*dropdown_selections):
user_rankings = []
for i in range(0, len(dropdown_selections), 4): # Process each set of 3 dropdowns for a question
selections = dropdown_selections[i+1:i+4]
# Check for duplicate selections within the same question
unique_selections = set(tuple(selection) for selection in selections)
# Now you can safely check if all sublists were unique
if len(selections) != len(unique_selections):
return "تأكد من عدم تكرار الإجابة لنفس السؤال"
question_index = i // 4
_, model_answers = questions[question_index]
for j, chosen_answer in enumerate(selections, start=1):
if chosen_answer == "...اختر": # Skip unselected dropdowns
continue
for model_answer, model in model_answers:
if model_answer == chosen_answer:
user_rankings.append((model, j)) # j is the rank (1, 2, or 3)
break
process_rankings(user_rankings)
return "سجلنا ردك، ما قصرت =)"
return gr.Interface(fn=rank_fluency, inputs=inputs, outputs=outputs, title="ترتيب فصاحة النماذج",
description=".لديك مجموعة من الأسئلة، الرجاء ترتيب إجابات كل سؤال حسب جودة و فصاحة الإجابة", css=css)
iface = rank_interface()
iface.launch()
|