ZeeAI1 commited on
Commit
bfb56e4
1 Parent(s): 99cf4b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py CHANGED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from datasets import load_dataset
3
+ from transformers import pipeline
4
+ import requests
5
+
6
+ # Load necessary datasets from Hugging Face
7
+ ds_natural_questions = load_dataset("google-research-datasets/natural_questions", "default")
8
+ ds_open_questions = load_dataset("launch/open_question_type")
9
+ ds_question_generator = load_dataset("iarfmoose/question_generator")
10
+ ds_jobs = load_dataset("lukebarousse/data_jobs")
11
+ ds_courses = load_dataset("azrai99/coursera-course-dataset")
12
+ universities_url = "https://www.4icu.org/top-universities-world/"
13
+
14
+ # Initialize the LLaMA model pipeline for text-to-text generation
15
+ qa_pipeline = pipeline("text2text-generation", model="llama-3.1-70b-versatile", tokenizer="llama-3.1-70b-versatile")
16
+
17
+ # Streamlit App Interface
18
+ st.title("Career Counseling Application")
19
+ st.subheader("Build Your Profile and Discover Tailored Career Recommendations")
20
+
21
+ # Sidebar for Profile Setup
22
+ st.sidebar.header("Profile Setup")
23
+ educational_background = st.sidebar.text_input("Educational Background (e.g., Degree, Major)")
24
+ interests = st.sidebar.text_input("Interests (e.g., AI, Data Science, Engineering)")
25
+ tech_skills = st.sidebar.text_area("Technical Skills (e.g., Python, SQL, Machine Learning)")
26
+ soft_skills = st.sidebar.text_area("Soft Skills (e.g., Communication, Teamwork)")
27
+
28
+ # Save profile data for session-based recommendations
29
+ profile_data = {
30
+ "educational_background": educational_background,
31
+ "interests": interests,
32
+ "tech_skills": tech_skills,
33
+ "soft_skills": soft_skills
34
+ }
35
+
36
+ if st.sidebar.button("Save Profile"):
37
+ st.session_state.profile_data = profile_data
38
+ st.sidebar.success("Profile saved successfully!")
39
+
40
+ # Intelligent Q&A Section
41
+ st.header("Intelligent Q&A")
42
+ question = st.text_input("Ask a career-related question:")
43
+ if question:
44
+ answer = qa_pipeline(question)[0]["generated_text"]
45
+ st.write("Answer:", answer)
46
+
47
+ # Career and Job Recommendations Section
48
+ st.header("Career and Job Recommendations")
49
+ if profile_data:
50
+ job_recommendations = []
51
+ for job in ds_jobs["train"]:
52
+ if any(skill.lower() in job["description"].lower() for skill in tech_skills.split(',')):
53
+ job_recommendations.append(job["title"])
54
+
55
+ if job_recommendations:
56
+ st.subheader("Job Recommendations")
57
+ st.write("Based on your profile, here are some potential job roles:")
58
+ for job in job_recommendations[:5]: # Limit to top 5 job recommendations
59
+ st.write("- ", job)
60
+ else:
61
+ st.write("No specific job recommendations found matching your profile.")
62
+
63
+ # Course Suggestions Section
64
+ st.header("Course Suggestions")
65
+ if profile_data:
66
+ course_recommendations = []
67
+ for course in ds_courses["train"]:
68
+ if any(interest.lower() in course["title"].lower() for interest in interests.split(',')):
69
+ course_recommendations.append(course["title"])
70
+
71
+ if course_recommendations:
72
+ st.subheader("Recommended Courses")
73
+ st.write("Here are some courses related to your interests:")
74
+ for course in course_recommendations[:5]: # Limit to top 5 course recommendations
75
+ st.write("- ", course)
76
+ else:
77
+ st.write("No specific courses found matching your interests.")
78
+
79
+ # University Recommendations Section
80
+ st.header("Top Universities")
81
+ st.write("For further education, you can explore the top universities worldwide:")
82
+ st.write(f"[View Top Universities Rankings]({universities_url})")
83
+
84
+ # Conclusion
85
+ st.write("Thank you for using the Career Counseling Application!")