LawTest3 / app.py
ZeeAI1's picture
Create app.py
8090f7b verified
raw
history blame
2.92 kB
import os
import requests
import streamlit as st
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import pipeline
import torch
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="πŸ“„")
@st.cache_resource
def load_summarization_pipeline():
try:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
return summarizer
except Exception as e:
st.error(f"Failed to load the summarization model: {e}")
return None
summarizer = load_summarization_pipeline()
PDF_FOLDERS = {
"Folder 1": ["https://huggingface.co/username/repo/resolve/main/file1.pdf"]
}
def fetch_pdf_text_from_folders(pdf_folders):
all_text = ""
for folder_name, urls in pdf_folders.items():
folder_text = f"\n[Folder: {folder_name}]\n"
for url in urls:
try:
response = requests.get(url)
response.raise_for_status()
pdf_file = BytesIO(response.content)
pdf_reader = PdfReader(pdf_file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
folder_text += page_text
except Exception as e:
st.error(f"Error fetching PDF from {url}: {e}")
all_text += folder_text
return all_text
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
return text_splitter.split_text(text)
@st.cache_resource
def load_embedding_function():
try:
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
except Exception as e:
st.error(f"Failed to load embedding model: {e}")
return None
embedding_function = load_embedding_function()
@st.cache_resource
def load_or_create_vector_store(text_chunks):
if not text_chunks:
st.error("No valid text chunks found.")
return None
try:
return FAISS.from_texts(text_chunks, embedding=embedding_function)
except Exception as e:
st.error(f"Failed to create or load vector store: {e}")
return None
def generate_summary_with_huggingface(query, retrieved_text):
summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}"[:1024]
try:
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
return summary[0]["summary_text"]
except Exception as e:
st.error(f"Failed to generate summary: {e}")
return "Error generating summary."
def user_input(user_question, vector_store):
if vector_store i