import os import requests import streamlit as st from io import BytesIO from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from transformers import pipeline import torch st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄") @st.cache_resource def load_summarization_pipeline(): try: summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1) return summarizer except Exception as e: st.error(f"Failed to load the summarization model: {e}") return None summarizer = load_summarization_pipeline() PDF_FOLDERS = { "Folder 1": ["https://huggingface.co/spaces/ZeeAI1/LawTest3/tree/main/documents1"] } def fetch_pdf_text_from_folders(pdf_folders): all_text = "" for folder_name, urls in pdf_folders.items(): folder_text = f"\n[Folder: {folder_name}]\n" for url in urls: try: response = requests.get(url) response.raise_for_status() pdf_file = BytesIO(response.content) pdf_reader = PdfReader(pdf_file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: folder_text += page_text except Exception as e: st.error(f"Error fetching PDF from {url}: {e}") all_text += folder_text return all_text @st.cache_data def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200) return text_splitter.split_text(text) @st.cache_resource def load_embedding_function(): try: return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") except Exception as e: st.error(f"Failed to load embedding model: {e}") return None embedding_function = load_embedding_function() @st.cache_resource def load_or_create_vector_store(text_chunks): if not text_chunks: st.error("No valid text chunks found.") return None try: return FAISS.from_texts(text_chunks, embedding=embedding_function) except Exception as e: st.error(f"Failed to create or load vector store: {e}") return None def generate_summary_with_huggingface(query, retrieved_text): summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}"[:1024] try: summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False) return summary[0]["summary_text"] except Exception as e: st.error(f"Failed to generate summary: {e}") return "Error generating summary." def user_input(user_question, vector_store): if vector_store is None: return "Vector store is empty." try: docs = vector_store.similarity_search(user_question) context_text = " ".join([doc.page_content for doc in docs]) return generate_summary_with_huggingface(user_question, context_text) except Exception as e: st.error(f"Error in similarity search: {e}") return "Error in similarity search." def main(): st.title("📄 Gen AI Lawyers Guide") raw_text = fetch_pdf_text_from_folders(PDF_FOLDERS) text_chunks = get_text_chunks(raw_text) vector_store = load_or_create_vector_store(text_chunks) user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") if st.button("Get Response"): if not user_question: st.warning("Please enter a question before submitting.") else: with st.spinner("Generating response..."): answer = user_input(user_question, vector_store) st.markdown(f"**🤖 AI:** {answer}") if __name__ == "__main__": main()