File size: 5,292 Bytes
154716a
 
 
 
 
431e656
154716a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f6ae1
154716a
 
40f6ae1
154716a
 
13f65e1
 
154716a
 
431e656
154716a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa8939
af608dd
154716a
 
1fa8939
 
154716a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431e656
154716a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image

model_id = 'Sygil/Sygil-Diffusion'
prefix = ''
     
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")

pipe = StableDiffusionPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler)

pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler)

if torch.cuda.is_available():
  pipe = pipe.to("cuda")
  pipe_i2i = pipe_i2i.to("cuda")

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False):

  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
  prompt = f"{prefix} {prompt}" if auto_prefix else prompt

  try:
    if img is not None:
      return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
    else:
      return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
  except Exception as e:
    return None, error_str(e)

def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):

    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
    
    return result.images[0]

def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe_i2i(
        prompt,
        negative_prompt = neg_prompt,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
        
    return result.images[0]

css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="main-div">
              <div>
                <h1>Sygil Diffusion</h1>
              </div>
              <p>
               Demo for the <a href="https://huggingface.co/Sygil/Sygil-Diffusion">Sygil Diffusion</a> model.<br>
               {"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
              </p>
                <a style="display:inline-block" href="https://huggingface.co/spaces/ZeroCool94/sygil-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>

            </div>
        """
       )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))

              image_out = gr.Image(height=512)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
              auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=30)
                steps = gr.Slider(label="Steps", value=30, minimum=10, maximum=500, step=10)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=64)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=64)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)

    inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

demo.queue(concurrency_count=2)
demo.launch()