|
import random |
|
import torch |
|
import torch.nn as nn |
|
import torchaudio |
|
from models.CLAP.open_clip import create_model |
|
from models.CLAP.training.data import get_audio_features |
|
from transformers import RobertaTokenizer |
|
from utils import ignore_warnings; ignore_warnings() |
|
|
|
|
|
class CLAP_Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
pretrained_path='checkpoint/music_speech_audioset_epoch_15_esc_89.98.pt', |
|
sampling_rate=32000, |
|
amodel = "HTSAT-base", |
|
): |
|
super().__init__() |
|
self.device = "cpu" |
|
self.precision = "fp32" |
|
self.amodel = amodel |
|
self.tmodel = "roberta" |
|
self.enable_fusion = False |
|
self.fusion_type = "aff_2d" |
|
self.pretrained = pretrained_path |
|
self.sampling_rate = sampling_rate |
|
self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") |
|
|
|
self.model, self.model_cfg = create_model( |
|
self.amodel, |
|
self.tmodel, |
|
self.pretrained, |
|
precision=self.precision, |
|
device=self.device, |
|
enable_fusion=self.enable_fusion, |
|
fusion_type=self.fusion_type, |
|
) |
|
|
|
for p in self.model.parameters(): |
|
p.requires_grad = False |
|
|
|
self.model.eval() |
|
self.encoder_type = 'CLAP' |
|
|
|
def batch_to_list(self, batch): |
|
ret = [] |
|
for i in range(batch.size(0)): |
|
ret.append(batch[i]) |
|
return ret |
|
|
|
def _get_audio_embed(self, batch): |
|
|
|
with torch.no_grad(): |
|
audio_dict_list = [] |
|
assert ( |
|
self.sampling_rate == 32000 |
|
), "We only support 32000 sampling rate" |
|
|
|
|
|
batch = torchaudio.functional.resample( |
|
batch, orig_freq=self.sampling_rate, new_freq=48000 |
|
) |
|
for waveform in self.batch_to_list(batch): |
|
audio_dict = {} |
|
audio_dict = get_audio_features( |
|
audio_dict, |
|
waveform, |
|
480000, |
|
data_truncating="fusion", |
|
data_filling="repeatpad", |
|
audio_cfg=self.model_cfg["audio_cfg"], |
|
) |
|
audio_dict_list.append(audio_dict) |
|
|
|
embed = self.model.get_audio_embedding(audio_dict_list) |
|
|
|
return embed.detach() |
|
|
|
def _get_text_embed(self, batch): |
|
double_batch = False |
|
if len(batch) == 1: |
|
batch = batch * 2 |
|
double_batch = True |
|
with torch.no_grad(): |
|
|
|
text_data = self.tokenizer(batch) |
|
embed = self.model.get_text_embedding(text_data) |
|
if double_batch: |
|
embed = embed[0].unsqueeze(0) |
|
|
|
return embed.detach() |
|
|
|
|
|
def get_query_embed(self, modality, audio=None, text=None, use_text_ratio=0.5, device=None): |
|
if modality == 'audio': |
|
embed = self._get_audio_embed(audio) |
|
elif modality == 'text': |
|
embed = self._get_text_embed(text) |
|
elif modality == 'hybird': |
|
if random.random() > use_text_ratio: |
|
embed = self._get_audio_embed(audio) |
|
else: |
|
embed = self._get_text_embed(text) |
|
else: |
|
raise NotImplementedError("Please check flag 'training_modality'.") |
|
|
|
return embed.float() |
|
|
|
def tokenizer(self, text): |
|
result = self.tokenize( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=512, |
|
return_tensors="pt", |
|
) |
|
return {k: v.squeeze(0) for k, v in result.items()} |
|
|