import gradio as gr gr.load("models/mistralai/Mistral-Nemo-Instruct-2407").launch() import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load pre-trained BlackMamba model and tokenizer model_name = "blackmamba" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) def generate_text(prompt, max_length=50): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Create Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="WormGPT", description="An evil brother of ChatGPT for Hugging Face Gradio" ) # Launch the interface iface.launch()