|
import os |
|
import time |
|
import ftplib |
|
import threading |
|
from tqdm.notebook import tqdm |
|
import zipfile |
|
import gradio as gr |
|
import torch |
|
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def get_model_ftp(model_path, model_name): |
|
ftp = ftplib.FTP('10.209.16.22') |
|
ftp.login('soltest', 'soltest') |
|
folder_path = '/ftp/3D/ai-model/ChatYuan/ClueAI/' |
|
ftp.cwd(folder_path) |
|
|
|
file_list = ftp.nlst(folder_path) |
|
if os.path.join(folder_path, model_name) in file_list: |
|
|
|
file_size = ftp.size(model_name) |
|
|
|
|
|
with open(os.path.join(model_path, model_name), 'wb') as f: |
|
|
|
with tqdm.wrapattr(f, 'write', desc="Download " + model_name, total=file_size, unit='B', unit_scale=True) as pbar: |
|
ftp.retrbinary('RETR ' + model_name, pbar.write) |
|
|
|
ftp.quit() |
|
unzip(model_path, model_name) |
|
|
|
|
|
|
|
def unzip(path, file_name): |
|
try: |
|
stop_unzip = threading.Event() |
|
thread = threading.Thread(target=print_flush, args=(stop_unzip, "start decompression ")) |
|
thread.start() |
|
zip_file = zipfile.ZipFile(os.path.join(path, file_name)) |
|
for names in zip_file.namelist(): |
|
zip_file.extract(names, path) |
|
zip_file.close() |
|
|
|
stop_unzip.set() |
|
thread.join() |
|
|
|
except Exception as ex: |
|
stop_unzip.set() |
|
thread.join() |
|
os.remove(os.path.join(path, file_name)) |
|
raise Exception(f"\nunzip失败:" + str(ex)) |
|
|
|
|
|
def prepare_model(model_dir): |
|
model_path = model_dir.split('/')[0] |
|
model_name = model_dir.split('/')[1] |
|
if not os.path.exists(model_dir): |
|
os.makedirs("ClueAI", exist_ok=True) |
|
get_model_ftp(model_path, model_name + '.zip') |
|
os.remove(os.path.join(model_path, model_name + '.zip')) |
|
|
|
|
|
def print_flush(stop_event, str): |
|
loading_strings = [str + ".", str + "..", str + "...", str + ".", str + "..", str + "..."] |
|
index = 0 |
|
|
|
while not stop_event.is_set(): |
|
loading_str = loading_strings[index] |
|
print(loading_str, end="\r") |
|
index = (index + 1) % len(loading_strings) |
|
time.sleep(0.5) |
|
|
|
|
|
if index == 0: |
|
print(" " * len(loading_str), end="\r") |
|
time.sleep(0.2) |
|
print(loading_strings[index], end="\r") |
|
print("\n" + str.split(" ")[1] + " finish.") |
|
|
|
|
|
model_dir = 'ClueAI/ChatYuan-large-v2' |
|
prepare_model(model_dir) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model.to(device) |
|
|
|
|
|
|
|
def preprocess(text): |
|
base_info = "" |
|
text = f"{base_info}{text}" |
|
text = text.replace("\n", "\\n").replace("\t", "\\t") |
|
return text |
|
|
|
|
|
def postprocess(text): |
|
return text.replace("\\n", "\n").replace("\\t", "\t").replace( |
|
'%20', ' ') |
|
|
|
|
|
generate_config = { |
|
'do_sample': True, |
|
'top_p': 0.9, |
|
'top_k': 50, |
|
'temperature': 0.7, |
|
'num_beams': 1, |
|
'max_length': 1024, |
|
'min_length': 3, |
|
'no_repeat_ngram_size': 5, |
|
'length_penalty': 0.6, |
|
'return_dict_in_generate': True, |
|
'output_scores': True |
|
} |
|
|
|
|
|
def answer( |
|
text, |
|
top_p, |
|
temperature, |
|
sample=True, |
|
): |
|
''' |
|
sample:是否抽样。生成任务,可以设置为True; |
|
top_p:0-1之间,生成的内容越多样 |
|
''' |
|
text = preprocess(text) |
|
encoding = tokenizer(text=[text], |
|
truncation=True, |
|
padding=True, |
|
max_length=1024, |
|
return_tensors="pt").to(device) |
|
if not sample: |
|
out = model.generate(**encoding, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
max_new_tokens=1024, |
|
num_beams=1, |
|
length_penalty=0.6) |
|
else: |
|
out = model.generate(**encoding, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
no_repeat_ngram_size=12) |
|
|
|
out_text = tokenizer.batch_decode(out["sequences"], |
|
skip_special_tokens=True) |
|
return postprocess(out_text[0]) |
|
|
|
|
|
def clear_session(): |
|
return '', None |
|
|
|
|
|
def chatyuan_bot(input, history, top_p, temperature, num): |
|
history = history or [] |
|
if len(history) > num: |
|
history = history[-num:] |
|
|
|
context = "\n".join([ |
|
f"用户:{input_text}\n小元:{answer_text}" |
|
for input_text, answer_text in history |
|
]) |
|
|
|
input_text = context + "\n用户:" + input + "\n小元:" |
|
input_text = input_text.strip() |
|
output_text = answer(input_text, top_p, temperature) |
|
print("open_model".center(20, "=")) |
|
print(f"{input_text}\n{output_text}") |
|
history.append((input, output_text)) |
|
return '', history, history |
|
|
|
|
|
def chatyuan_bot_regenerate(input, history, top_p, temperature, num): |
|
history = history or [] |
|
|
|
if history: |
|
input = history[-1][0] |
|
history = history[:-1] |
|
|
|
if len(history) > num: |
|
history = history[-num:] |
|
|
|
context = "\n".join([ |
|
f"用户:{input_text}\n小元:{answer_text}" |
|
for input_text, answer_text in history |
|
]) |
|
|
|
input_text = context + "\n用户:" + input + "\n小元:" |
|
input_text = input_text.strip() |
|
output_text = answer(input_text, top_p, temperature) |
|
print("open_model".center(20, "=")) |
|
print(f"{input_text}\n{output_text}") |
|
history.append((input, output_text)) |
|
return '', history, history |
|
|
|
|
|
block = gr.Blocks() |
|
|
|
with block as demo: |
|
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1> |
|
<font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model</font> |
|
<font size=4>注意:gradio对markdown代码格式展示有限</font> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(label='ChatYuan').style(height=400) |
|
|
|
with gr.Column(scale=1): |
|
num = gr.Slider(minimum=4, |
|
maximum=10, |
|
label="最大的对话轮数", |
|
value=5, |
|
step=1) |
|
top_p = gr.Slider(minimum=0, |
|
maximum=1, |
|
label="top_p", |
|
value=1, |
|
step=0.1) |
|
temperature = gr.Slider(minimum=0, |
|
maximum=1, |
|
label="temperature", |
|
value=0.7, |
|
step=0.1) |
|
clear_history = gr.Button("👋 清除历史对话 | Clear History") |
|
send = gr.Button("🚀 发送 | Send") |
|
regenerate = gr.Button("🚀 重新生成本次结果 | regenerate") |
|
message = gr.Textbox() |
|
state = gr.State() |
|
message.submit(chatyuan_bot, |
|
inputs=[message, state, top_p, temperature, num], |
|
outputs=[message, chatbot, state]) |
|
regenerate.click(chatyuan_bot_regenerate, |
|
inputs=[message, state, top_p, temperature, num], |
|
outputs=[message, chatbot, state]) |
|
send.click(chatyuan_bot, |
|
inputs=[message, state, top_p, temperature, num], |
|
outputs=[message, chatbot, state]) |
|
|
|
clear_history.click(fn=clear_session, |
|
inputs=[], |
|
outputs=[chatbot, state], |
|
queue=False) |
|
|
|
|
|
block = gr.Blocks() |
|
with block as introduction: |
|
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1> |
|
|
|
<font size=4>😉ChatYuan: 元语功能型对话大模型 | General Model for Dialogue with ChatYuan |
|
<br> |
|
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 |
|
<br> |
|
ChatYuan large v2 is an open-source large language model for dialogue, supports both Chinese and English languages, and in ChatGPT style. |
|
<br> |
|
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。 |
|
<br> |
|
在Chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化: |
|
- 新增了中英双语对话能力。 |
|
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。 |
|
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。 |
|
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。 |
|
- 新增了表格生成功能。使生成的表格内容和格式更适配。 |
|
- 增强了基础数学运算能力。 |
|
- 最大长度token数扩展到4096。 |
|
- 增强了模拟情景能力。.<br> |
|
<br> |
|
Based on the original functions of Chatyuan-large-v1, we optimized the model as follows: |
|
-Added the ability to speak in both Chinese and English. |
|
-Added the ability to refuse to answer. Learn to refuse to answer some dangerous and harmful questions. |
|
-Added code generation functionality. Basic code generation has been optimized to a certain extent. |
|
-Enhanced basic capabilities. The original contextual Q&A and creative writing skills have significantly improved. |
|
-Added a table generation function. Make the generated table content and format more appropriate. |
|
-Enhanced basic mathematical computing capabilities. |
|
-The maximum number of length tokens has been expanded to 4096. |
|
-Enhanced ability to simulate scenarios< br> |
|
<br> |
|
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成. <br> |
|
<br> |
|
<a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> | <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> | <a href='https://www.clueai.cn' target="_blank">官网体验场</a> | <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> | <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> | <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> |
|
</font> |
|
<center><a href="https://clustrmaps.com/site/1bts0" title="Visit tracker"><img src="//www.clustrmaps.com/map_v2.png?d=ycVCe17noTYFDs30w7AmkFaE-TwabMBukDP1802_Lts&cl=ffffff" /></a></center> |
|
""") |
|
|
|
gui = gr.TabbedInterface( |
|
interface_list=[introduction, demo], |
|
tab_names=["相关介绍 | Introduction", "开源模型 | Online Demo"]) |
|
|
|
|
|
|