Spaces:
Runtime error
Runtime error
File size: 8,493 Bytes
9183c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import streamlit as st
from util import developer_info_static
from src.plot import list_all, distribution_histogram, distribution_boxplot, count_Y, box_plot, violin_plot, strip_plot, density_plot ,multi_plot_heatmap, multi_plot_scatter, multi_plot_line, word_cloud_plot, world_map, scatter_3d
def display_word_cloud(text):
_, word_cloud_col, _ = st.columns([1, 3, 1])
with word_cloud_col:
word_fig = word_cloud_plot(text)
if word_fig == -1:
st.error('Data not supported')
else:
st.pyplot(word_cloud_plot(text))
def data_visualization(DF):
st.divider()
st.subheader('Data Visualization')
attributes = DF.columns.tolist()
# Three tabs for three kinds of visualization
single_tab, multiple_tab, advanced_tab = st.tabs(['Single Attribute Visualization', 'Multiple Attributes Visualization', 'Advanced Visualization'])
# Single attribute visualization
with single_tab:
_, col_mid, _ = st.columns([1, 5, 1])
with col_mid:
plot_area = st.empty()
col1, col2 = st.columns(2)
with col1:
att = st.selectbox(
label = 'Select an attribute to visualize:',
options = attributes,
index = len(attributes)-1
)
st.write(f'Attribute selected: :green[{att}]')
with col2:
plot_types = ['Donut chart', 'Violin plot', 'Distribution histogram', 'Boxplot', 'Density plot', 'Strip plot', 'Distribution boxplot']
plot_type = st.selectbox(
key = 'plot_type1',
label = 'Select a plot type:',
options = plot_types,
index = 0
)
st.write(f'Plot type selected: :green[{plot_type}]')
if plot_type == 'Distribution histogram':
fig = distribution_histogram(DF, att)
plot_area.pyplot(fig)
elif plot_type == 'Distribution boxplot':
fig = distribution_boxplot(DF, att)
if fig == -1:
plot_area.error('The attribute is not numeric')
else:
plot_area.pyplot(fig)
elif plot_type == 'Donut chart':
fig = count_Y(DF, att)
plot_area.plotly_chart(fig)
elif plot_type == 'Boxplot':
fig = box_plot(DF, [att])
plot_area.plotly_chart(fig)
elif plot_type == 'Violin plot':
fig = violin_plot(DF, [att])
plot_area.plotly_chart(fig)
elif plot_type == 'Strip plot':
fig = strip_plot(DF, [att])
plot_area.plotly_chart(fig)
elif plot_type == 'Density plot':
fig = density_plot(DF, att)
plot_area.plotly_chart(fig)
# Multiple attribute visualization
with multiple_tab:
col1, col2 = st.columns([6, 4])
with col1:
options = st.multiselect(
label = 'Select multiple attributes to visualize:',
options = attributes,
default = []
)
with col2:
plot_types = ["Violin plot", "Boxplot", "Heatmap", "Strip plot", "Line plot", "Scatter plot"]
plot_type = st.selectbox(
key = 'plot_type2',
label = 'Select a plot type:',
options = plot_types,
index = 0
)
_, col_mid, _ = st.columns([1, 5, 1])
with col_mid:
plot_area = st.empty()
if options:
if plot_type == 'Scatter plot':
fig = multi_plot_scatter(DF, options)
if fig == -1:
plot_area.error('Scatter plot requires two attributes')
else:
plot_area.pyplot(fig)
elif plot_type == 'Heatmap':
fig = multi_plot_heatmap(DF, options)
if fig == -1:
plot_area.error('The attributes are not numeric')
else:
plot_area.pyplot(fig)
elif plot_type == 'Boxplot':
fig = box_plot(DF, options)
if fig == -1:
plot_area.error('The attributes are not numeric')
else:
plot_area.plotly_chart(fig)
elif plot_type == 'Violin plot':
fig = violin_plot(DF, options)
if fig == -1:
plot_area.error('The attributes are not numeric')
else:
plot_area.plotly_chart(fig)
elif plot_type == 'Strip plot':
fig = strip_plot(DF, options)
if fig == -1:
plot_area.error('The attributes are not numeric')
else:
plot_area.plotly_chart(fig)
elif plot_type == 'Line plot':
fig = multi_plot_line(DF, options)
if fig == -1:
plot_area.error('The attributes are not numeric')
elif fig == -2:
plot_area.error('Line plot requires two attributes')
else:
plot_area.pyplot(fig)
# Advanced visualization
with advanced_tab:
st.subheader("3D Scatter Plot")
column_1, column_2, column_3 = st.columns(3)
with column_1:
x = st.selectbox(
key = 'x',
label = 'Select the x attribute:',
options = attributes,
index = 0
)
with column_2:
y = st.selectbox(
key = 'y',
label = 'Select the y attribute:',
options = attributes,
index = 1 if len(attributes) > 1 else 0
)
with column_3:
z = st.selectbox(
key = 'z',
label = 'Select the z attribute:',
options = attributes,
index = 2 if len(attributes) > 2 else 0
)
if st.button('Generate 3D Plot'):
_, fig_3d_col, _ = st.columns([1, 3, 1])
with fig_3d_col:
fig_3d_1 = scatter_3d(DF, x, y, z)
if fig_3d_1 == -1:
st.error('Data not supported')
else:
st.plotly_chart(fig_3d_1)
st.divider()
st.subheader('World Cloud')
upload_txt_checkbox = st.checkbox('Upload a new text file instead')
if upload_txt_checkbox:
uploaded_txt = st.file_uploader("Choose a text file", accept_multiple_files=False, type="txt")
if uploaded_txt:
text = uploaded_txt.read().decode("utf-8")
display_word_cloud(text)
else:
text_attr = st.selectbox(
label = 'Select the text attribute:',
options = attributes,
index = 0)
if st.button('Generate Word Cloud'):
text = DF[text_attr].astype(str).str.cat(sep=' ')
display_word_cloud(text)
st.divider()
st.subheader('World Heat Map')
col_1, col_2 = st.columns(2)
with col_1:
country_col = st.selectbox(
key = 'country_col',
label = 'Select the country attribute:',
options = attributes,
index = 0
)
with col_2:
heat_attribute = st.selectbox(
key = 'heat_attribute',
label = 'Select the attribute to display in heat map:',
options = attributes,
index = len(attributes) - 1
)
if st.button("Show Heatmap"):
_, map_col, _ = st.columns([1, 3, 1])
with map_col:
world_fig = world_map(DF, country_col, heat_attribute)
if world_fig == -1:
st.error('Data not supported')
else:
st.plotly_chart(world_fig)
st.divider()
# Data Overview
st.subheader('Data Overview')
if 'data_origin' not in st.session_state:
st.session_state.data_origin = DF
st.dataframe(st.session_state.data_origin.describe(), width=1200)
if 'overall_plot' not in st.session_state:
st.session_state.overall_plot = list_all(st.session_state.data_origin)
st.pyplot(st.session_state.overall_plot)
st.divider()
developer_info_static() |