Wilson-ZheLin
Initial commit
9183c57
import nltk
import seaborn as sns
import numpy as np
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import scipy.stats as stats
from sklearn.decomposition import PCA
from wordcloud import WordCloud
from sklearn.metrics import confusion_matrix
from nltk import regexp_tokenize
# Single attribute visualization
def distribution_histogram(df, attribute):
"""
Histogram of the distribution of a single attribute.
"""
if df[attribute].dtype == 'object' or pd.api.types.is_categorical_dtype(df[attribute]):
codes, uniques = pd.factorize(df[attribute])
temp_df = pd.DataFrame({attribute: codes})
fig, ax = plt.subplots(figsize=(8, 6))
sns.histplot(temp_df[attribute], ax=ax, discrete=True, color='#e17160')
ax.set_xticks(range(len(uniques)))
ax.set_xticklabels(uniques, rotation=45, ha='right')
else:
fig, ax = plt.subplots(figsize=(6, 4))
sns.histplot(df[attribute], ax=ax, color='#e17160')
ax.set_title(f"Distribution of {attribute}")
return fig
def distribution_boxplot(df, attribute):
"""
Boxplot of the distribution of a single attribute.
"""
if df[attribute].dtype == 'object' or pd.api.types.is_categorical_dtype(df[attribute]):
return -1
fig, ax = plt.subplots(figsize=(8, 6))
sns.boxenplot(data=df[attribute], palette=["#32936f", "#26a96c", "#2bc016"])
ax.set_title(f"Boxplot of {attribute}")
return fig
def count_Y(df, Y_name):
"""
Donut chart of the distribution of a single attribute.
"""
if Y_name in df.columns and df[Y_name].nunique() >= 1:
value_counts = df[Y_name].value_counts()
fig = px.pie(names=value_counts.index,
values=value_counts.values,
title=f'Distribution of {Y_name}',
hole=0.5,
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def density_plot(df, column_name):
"""
Density plot of the distribution of a single attribute.
"""
if column_name in df.columns:
fig = px.density_contour(df, x=column_name, y=column_name,
title=f'Density Plot of {column_name}',
color_discrete_sequence=px.colors.sequential.Inferno)
return fig
# Mutiple attribute visualization
def box_plot(df, column_names):
"""
Box plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.box(df, y=valid_columns,
title=f'Box Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def violin_plot(df, column_names):
"""
Violin plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.violin(df, y=valid_columns,
title=f'Violin Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def strip_plot(df, column_names):
"""
Strip plot of multiple attributes.
"""
if len(column_names) > 1 and not all(df[column_names].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
valid_columns = [col for col in column_names if col in df.columns]
if valid_columns:
fig = px.strip(df, y=valid_columns,
title=f'Strip Plot of {", ".join(valid_columns)}',
color_discrete_sequence=px.colors.sequential.Cividis_r)
return fig
def multi_plot_scatter(df, selected_attributes):
"""
Scatter plot of multiple attributes.
"""
if len(selected_attributes) < 2:
return -1
plt.figure(figsize=(10, 6))
if df[selected_attributes[0]].dtype not in [np.float64, np.int64]:
x, x_labels = pd.factorize(df[selected_attributes[0]])
plt.xticks(ticks=np.arange(len(x_labels)), labels=x_labels, rotation=45)
else:
x = df[selected_attributes[0]]
if df[selected_attributes[1]].dtype not in [np.float64, np.int64]:
y, y_labels = pd.factorize(df[selected_attributes[1]])
plt.yticks(ticks=np.arange(len(y_labels)), labels=y_labels)
else:
y = df[selected_attributes[1]]
plt.scatter(x, y, c=np.linspace(0, 1, len(df)), cmap='viridis')
plt.colorbar()
plt.xlabel(selected_attributes[0])
plt.ylabel(selected_attributes[1])
plt.title(f'Scatter Plot of {selected_attributes[0]} vs {selected_attributes[1]}')
return plt.gcf()
def multi_plot_line(df, selected_attributes):
"""
Line plot of multiple attributes.
"""
if not all(df[selected_attributes].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
if len(selected_attributes) >= 2:
plt.figure(figsize=(10, 6))
colors = plt.cm.viridis(np.linspace(0, 1, len(selected_attributes)))
for i, attribute in enumerate(selected_attributes):
plt.plot(df.index, df[attribute], marker='', linewidth=2, color=colors[i], label=attribute)
plt.legend()
plt.xlabel(selected_attributes[0])
plt.ylabel(selected_attributes[1])
plt.title(f'Line Plot of {selected_attributes[0]} vs {selected_attributes[1]}')
return plt.gcf()
else:
return -2
def multi_plot_heatmap(df, selected_attributes):
"""
Correlation heatmap of multiple attributes.
"""
if not all(df[selected_attributes].dtypes.apply(lambda x: np.issubdtype(x, np.number))):
return -1
if len(selected_attributes) >= 1:
sns.set_theme()
plt.figure(figsize=(10, 8))
sns.heatmap(df[selected_attributes].corr(), annot=True, cmap='viridis')
plt.title('Heatmap of Correlation')
return plt.gcf()
# Overall visualization
@st.cache_data
def correlation_matrix(df):
"""
Correlation heatmap of all attributes using Seaborn.
"""
plt.figure(figsize=(16, 12))
sns.set(font_scale=0.9)
sns.heatmap(df.corr(), annot=True, cmap='viridis', annot_kws={"size": 12})
return plt.gcf()
@st.cache_data
def correlation_matrix_plotly(df):
"""
Correlation heatmap of all attributes using Plotly.
"""
corr_matrix = df.corr()
labels = corr_matrix.columns
text = [[f'{corr_matrix.iloc[i, j]:.2f}' for j in range(len(labels))] for i in range(len(labels))]
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=labels,
y=labels,
colorscale='Viridis',
colorbar=dict(title='Correlation'),
text=text,
hoverinfo='text',
))
fig.update_layout(
title='Correlation Matrix Between Attributes',
xaxis=dict(tickmode='linear'),
yaxis=dict(tickmode='linear'),
width=800,
height=700,
)
fig.update_layout(font=dict(size=10))
return fig
@st.cache_data
def list_all(df, max_plots=16):
"""
Display histograms of all attributes in the DataFrame.
"""
# Calculate the number of plots to display (up to 16)
num_plots = min(len(df.columns), max_plots)
nrows = int(np.ceil(num_plots / 4))
ncols = min(num_plots, 4)
fig, axes = plt.subplots(nrows, ncols, figsize=(4 * ncols, 4 * nrows))
fig.suptitle('Attribute Distributions', fontsize=20)
plt.style.use('ggplot')
sns.set(style="darkgrid")
# if only one plot, convert to list
if num_plots == 1: axes = [axes]
# Flatten the axes array
axes = axes.flatten()
# Display the histograms
for i, column in enumerate(df.columns[:num_plots]):
sns.histplot(ax=axes[i], data=df, x=column, color='#1867ac')
# Hide additional subplots
for ax in axes[num_plots:]: ax.axis('off')
plt.tight_layout()
plt.subplots_adjust(top=0.95) # Adjust the top to accommodate the title
return fig
# Model evaluation
def confusion_metrix(model_name, model, X_test, Y_test):
"""
Confusion matrix plot for classification models
"""
Y_pred = model.predict(X_test)
matrix = confusion_matrix(Y_test, Y_pred)
plt.figure(figsize=(10, 7)) # temporary
sns_heatmap = sns.heatmap(matrix, annot=True, cmap='Blues', fmt='g', annot_kws={"size": 20})
plt.title(f"Confusion Matrix for {model_name}", fontsize=20)
plt.xlabel('Predicted labels', fontsize=16)
plt.ylabel('True labels', fontsize=16)
return sns_heatmap.figure
def roc(model_name, fpr, tpr):
"""
ROC curve for classification models
"""
fig = plt.figure()
plt.style.use('ggplot')
plt.plot([0,1],[0,1],'k--')
plt.plot(fpr, tpr, label=model_name)
plt.xlabel('False Positive rate')
plt.ylabel('True Positive rate')
plt.title(f'ROC Curve - {model_name}')
plt.legend(loc='best')
plt.xticks(rotation=45)
return fig
def plot_clusters(X, labels):
"""
Scatter plot of clusters for clustering models
"""
sns.set(style="whitegrid")
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
unique_labels = set(labels)
colors = plt.cm.viridis(np.linspace(0, 1, len(unique_labels)))
fig, ax = plt.subplots()
for color, label in zip(colors, unique_labels):
idx = labels == label
ax.scatter(X_pca[idx, 0], X_pca[idx, 1], color=color, label=f'Cluster {label}', s=50)
ax.set_title('Cluster Scatter Plot')
ax.legend()
return fig
def plot_residuals(y_pred, Y_test):
"""
Residual plot for regression models
"""
residuals = Y_test - y_pred
fig, ax = plt.subplots()
sns.residplot(x=y_pred, y=residuals, lowess=True, ax=ax, scatter_kws={'alpha': 0.7}, line_kws={'color': 'purple', 'lw': 2})
ax.set_xlabel('Predicted Values')
ax.set_ylabel('Residuals')
ax.set_title('Residual Plot')
return fig
def plot_predictions_vs_actual(y_pred, Y_test):
"""
Scatter plot of predicted vs. actual values for regression models
"""
fig, ax = plt.subplots()
ax.scatter(Y_test, y_pred, c='#10a37f', marker='x')
ax.plot([Y_test.min(), Y_test.max()], [Y_test.min(), Y_test.max()], 'k--', lw=2)
ax.set_xlabel('Actual')
ax.set_ylabel('Predicted')
ax.set_title('Actual vs. Predicted')
ax.set_facecolor('white')
ax.grid(True, which='major', linestyle='--', linewidth=0.5, color='gray')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return fig
def plot_qq_plot(y_pred, Y_test):
"""
Quantile-Quantile plot for regression models
"""
residuals = Y_test - y_pred
fig, ax = plt.subplots()
(osm, osr), (slope, intercept, r) = stats.probplot(residuals, dist="norm", plot=None)
line = slope * osm + intercept
ax.plot(osm, line, 'grey', lw=2)
ax.scatter(osm, osr, alpha=0.8, edgecolors='#e8b517', c='yellow', label='Data Points')
ax.set_title('Quantile-Quantile Plot')
ax.set_facecolor('white')
ax.grid(True, which='major', linestyle='--', linewidth=0.5, color='gray')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xlabel('Theoretical Quantiles')
ax.set_ylabel('Ordered Values')
return fig
# Advanced Visualization
@st.cache_data
def word_cloud_plot(text):
"""
Generates and displays a word cloud from the given text.
The word cloud visualizes the frequency of occurrence of words in the text, with the size of each word indicating its frequency.
:param text: The input text from which to generate the word cloud.
:return: A matplotlib figure object containing the word cloud if successful, -1 otherwise.
"""
try:
words = regexp_tokenize(text, pattern='\w+')
text_dist = nltk.FreqDist([w for w in words])
wordcloud = WordCloud(width=1200, height=600, background_color ='white').generate_from_frequencies(text_dist)
fig, ax = plt.subplots(figsize=(10, 7.5))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
return fig
except:
return -1
@st.cache_data
def world_map(df, country_column, key_attribute):
"""
Creates a choropleth world map visualization based on the specified DataFrame.
The function highlights countries based on a key attribute, providing an interactive map that can be used to analyze geographical data distributions.
:param df: DataFrame containing the data to be visualized.
:param country_column: Name of the column in df that contains country names.
:param key_attribute: Name of the column in df that contains the data to visualize on the map.
:return: A Plotly figure object representing the choropleth map if successful, -1 otherwise.
"""
try:
hover_data_columns = [col for col in df.columns if col != country_column]
fig = px.choropleth(df, locations="iso_alpha",
color=key_attribute,
hover_name=country_column,
hover_data=hover_data_columns,
color_continuous_scale=px.colors.sequential.Cividis,
projection="equirectangular",)
return fig
except:
return -1
@st.cache_data
def scatter_3d(df, x, y, z):
"""
Generates a 3D scatter plot from the given DataFrame.
Each point in the plot corresponds to a row in the DataFrame, with its position determined by three specified columns. Points are colored based on the values of the z-axis.
:param df: DataFrame containing the data to be visualized.
:param x: Name of the column in df to use for the x-axis values.
:param y: Name of the column in df to use for the y-axis values.
:param z: Name of the column in df to use for the z-axis values and color coding.
:return: A Plotly figure object containing the 3D scatter plot if successful, -1 otherwise.
"""
try:
return px.scatter_3d(df, x=x, y=y, z=z, color=z, color_continuous_scale=px.colors.sequential.Viridis)
except:
return -1