import streamlit as st from util import developer_info, developer_info_static from src.plot import plot_clusters, correlation_matrix_plotly from src.handle_null_value import contains_missing_value, remove_high_null, fill_null_values from src.preprocess import convert_to_numeric, remove_duplicates, transform_data_for_clustering from src.llm_service import decide_fill_null, decide_encode_type, decide_cluster_model from src.pca import decide_pca, perform_PCA_for_clustering from src.model_service import save_model, calculate_silhouette_score, calculate_calinski_harabasz_score, calculate_davies_bouldin_score, gmm_predict, estimate_optimal_clusters from src.cluster_model import train_select_cluster_model from src.util import contain_null_attributes_info, separate_fill_null_list, check_all_columns_numeric, non_numeric_columns_and_head, separate_decode_list, get_cluster_method_name def start_training_model(): st.session_state["start_training"] = True def cluster_model_pipeline(DF, API_KEY, GPT_MODEL): st.divider() st.subheader('Data Overview') if 'data_origin' not in st.session_state: st.session_state.data_origin = DF st.dataframe(st.session_state.data_origin.describe(), width=1200) # Data Imputation st.subheader('Handle and Impute Missing Values') if "contain_null" not in st.session_state: st.session_state.contain_null = contains_missing_value(st.session_state.data_origin) if 'filled_df' not in st.session_state: if st.session_state.contain_null: with st.status("Processing **missing values** in the data...", expanded=True) as status: st.write("Filtering out high-frequency missing rows and columns...") filled_df = remove_high_null(DF) st.write("Large language model analysis...") attributes, types_info, description_info = contain_null_attributes_info(filled_df) fill_result_dict = decide_fill_null(attributes, types_info, description_info, GPT_MODEL, API_KEY) st.write("Imputing missing values...") mean_list, median_list, mode_list, new_category_list, interpolation_list = separate_fill_null_list(fill_result_dict) filled_df = fill_null_values(filled_df, mean_list, median_list, mode_list, new_category_list, interpolation_list) # Store the imputed DataFrame in session_state st.session_state.filled_df = filled_df DF = filled_df status.update(label='Missing value processing completed!', state="complete", expanded=False) st.download_button( label="Download Data with Missing Values Imputed", data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'), file_name="imputed_missing_values.csv", mime='text/csv') else: st.session_state.filled_df = DF st.success("No missing values detected. Processing skipped.") else: st.success("Missing value processing completed!") if st.session_state.contain_null: st.download_button( label="Download Data with Missing Values Imputed", data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'), file_name="imputed_missing_values.csv", mime='text/csv') # Data Encoding st.subheader("Process Data Encoding") st.caption("*For considerations of processing time, **NLP features** like **TF-IDF** have not been included in the current pipeline, long text attributes may be dropped.") if 'all_numeric' not in st.session_state: st.session_state.all_numeric = check_all_columns_numeric(st.session_state.data_origin) if 'encoded_df' not in st.session_state: if not st.session_state.all_numeric: with st.status("Encoding non-numeric data using **numeric mapping** and **one-hot**...", expanded=True) as status: non_numeric_attributes, non_numeric_head = non_numeric_columns_and_head(DF) st.write("Large language model analysis...") encode_result_dict = decide_encode_type(non_numeric_attributes, non_numeric_head, GPT_MODEL, API_KEY) st.write("Encoding the data...") convert_int_cols, one_hot_cols, drop_cols = separate_decode_list(encode_result_dict, "") encoded_df, mappings = convert_to_numeric(DF, convert_int_cols, one_hot_cols, drop_cols) # Store the imputed DataFrame in session_state st.session_state.encoded_df = encoded_df DF = encoded_df status.update(label='Data encoding completed!', state="complete", expanded=False) st.download_button( label="Download Encoded Data", data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'), file_name="encoded_data.csv", mime='text/csv') else: st.session_state.encoded_df = DF st.success("All columns are numeric. Processing skipped.") else: st.success("Data encoded completed using numeric mapping and one-hot!") if not st.session_state.all_numeric: st.download_button( label="Download Encoded Data", data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'), file_name="encoded_data.csv", mime='text/csv') # Correlation Heatmap if 'df_cleaned1' not in st.session_state: st.session_state.df_cleaned1 = DF st.subheader('Correlation Between Attributes') st.plotly_chart(correlation_matrix_plotly(st.session_state.df_cleaned1)) # Remove duplicate entities st.subheader('Remove Duplicate Entities') if 'df_cleaned2' not in st.session_state: st.session_state.df_cleaned2 = remove_duplicates(st.session_state.df_cleaned1) # DF = remove_duplicates(DF) st.info("Duplicate rows removed.") # Data Transformation st.subheader('Data Transformation') if 'data_transformed' not in st.session_state: st.session_state.data_transformed = transform_data_for_clustering(st.session_state.df_cleaned2) st.success("Data transformed by standardization and box-cox if applicable.") # PCA st.subheader('Principal Component Analysis') st.write("Deciding whether to perform PCA...") if 'df_pca' not in st.session_state: _, n_components = decide_pca(st.session_state.df_cleaned2) st.session_state.df_pca = perform_PCA_for_clustering(st.session_state.data_transformed, n_components) st.success("Completed!") # Splitting and Balancing if 'test_percentage' not in st.session_state: st.session_state.test_percentage = 20 if 'balance_data' not in st.session_state: st.session_state.balance_data = False if "start_training" not in st.session_state: st.session_state["start_training"] = False if 'model_trained' not in st.session_state: st.session_state['model_trained'] = False splitting_column, balance_column = st.columns(2) with splitting_column: st.subheader(':grey[Data Splitting]') st.caption('Data splitting is not applicable to clustering models.') st.slider('Percentage of test set', 1, 25, st.session_state.test_percentage, key='test_percentage', disabled=True) with balance_column: st.metric(label="Test Data", value="--%", delta=None) st.toggle('Class Balancing', value=st.session_state.balance_data, key='to_perform_balance', disabled=True) st.caption('Class balancing is not applicable to clustering models.') st.button("Start Training Model", on_click=start_training_model, type="primary", disabled=st.session_state['start_training']) # Model Training if st.session_state['start_training']: with st.container(): st.header("Modeling") if not st.session_state.get("data_prepared", False): st.session_state.X = st.session_state.df_pca st.session_state.data_prepared = True # Decide model types: if "decided_model" not in st.session_state: st.session_state["decided_model"] = False if "all_set" not in st.session_state: st.session_state["all_set"] = False if not st.session_state["decided_model"]: with st.spinner("Deciding models based on data..."): shape_info = str(st.session_state.X.shape) description_info = st.session_state.X.describe().to_csv() cluster_info = estimate_optimal_clusters(st.session_state.X) st.session_state.default_cluster = cluster_info model_dict = decide_cluster_model(shape_info, description_info, cluster_info, GPT_MODEL, API_KEY) model_list = list(model_dict.values()) if 'model_list' not in st.session_state: st.session_state.model_list = model_list st.session_state.decided_model = True # Display results if st.session_state["decided_model"]: display_results(st.session_state.X) st.session_state["all_set"] = True # Download models if st.session_state["all_set"]: download_col1, download_col2, download_col3 = st.columns(3) with download_col1: st.download_button(label="Download Model", data=st.session_state.downloadable_model1, file_name=f"{st.session_state.model1_name}.joblib", mime="application/octet-stream") with download_col2: st.download_button(label="Download Model", data=st.session_state.downloadable_model2, file_name=f"{st.session_state.model2_name}.joblib", mime="application/octet-stream") with download_col3: st.download_button(label="Download Model", data=st.session_state.downloadable_model3, file_name=f"{st.session_state.model3_name}.joblib", mime="application/octet-stream") # Footer st.divider() if "all_set" in st.session_state and st.session_state["all_set"]: if "has_been_set" not in st.session_state: st.session_state["has_been_set"] = True developer_info() else: developer_info_static() def display_results(X): st.success("Models selected based on your data!") # Data set metrics st.metric(label="Total Data", value=len(X), delta=None) # Model training model_col1, model_col2, model_col3 = st.columns(3) with model_col1: if "model1_name" not in st.session_state: st.session_state.model1_name = get_cluster_method_name(st.session_state.model_list[0]) st.subheader(st.session_state.model1_name) # Slider for model parameters if st.session_state.model_list[0] == 2: st.caption('N-cluster is not applicable to DBSCAN.') else: st.caption(f'N-cluster for {st.session_state.model1_name}:') n_clusters1 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters1', disabled=st.session_state.model_list[0] == 2) with st.spinner("Model training in progress..."): st.session_state.model1 = train_select_cluster_model(X, n_clusters1, st.session_state.model_list[0]) st.session_state.downloadable_model1 = save_model(st.session_state.model1) if st.session_state.model_list[0] != 3: label1 = st.session_state.model1.labels_ else: label1 = gmm_predict(X, st.session_state.model1) # Visualization st.pyplot(plot_clusters(X, label1)) # Model metrics st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label1)}**]') st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label1)}**]') st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label1)}**]') with model_col2: if "model2_name" not in st.session_state: st.session_state.model2_name = get_cluster_method_name(st.session_state.model_list[1]) st.subheader(st.session_state.model2_name) # Slider for model parameters if st.session_state.model_list[1] == 2: st.caption('N-cluster is not applicable to DBSCAN.') else: st.caption(f'N-cluster for {st.session_state.model2_name}:') n_clusters2 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters2', disabled=st.session_state.model_list[1] == 2) with st.spinner("Model training in progress..."): st.session_state.model2 = train_select_cluster_model(X, n_clusters2, st.session_state.model_list[1]) st.session_state.downloadable_model2 = save_model(st.session_state.model2) if st.session_state.model_list[1] != 3: label2 = st.session_state.model2.labels_ else: label2 = gmm_predict(X, st.session_state.model2) # Visualization st.pyplot(plot_clusters(X, label2)) # Model metrics st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label2)}**]') st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label2)}**]') st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label2)}**]') with model_col3: if "model3_name" not in st.session_state: st.session_state.model3_name = get_cluster_method_name(st.session_state.model_list[2]) st.subheader(st.session_state.model3_name) # Slider for model parameters if st.session_state.model_list[2] == 2: st.caption('N-cluster is not applicable to DBSCAN.') else: st.caption(f'N-cluster for {st.session_state.model3_name}:') n_clusters3 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters3', disabled=st.session_state.model_list[2] == 2) with st.spinner("Model training in progress..."): st.session_state.model3 = train_select_cluster_model(X, n_clusters3, st.session_state.model_list[2]) st.session_state.downloadable_model3 = save_model(st.session_state.model3) if st.session_state.model_list[2] != 3: label3 = st.session_state.model3.labels_ else: label3 = gmm_predict(X, st.session_state.model3) # Visualization st.pyplot(plot_clusters(X, label3)) # Model metrics st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label3)}**]') st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label3)}**]') st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label3)}**]')