Upload
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from copy import deepcopy
|
10 |
+
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from gradio_imageslider import ImageSlider
|
14 |
+
|
15 |
+
## local code
|
16 |
+
from models import seemore
|
17 |
+
|
18 |
+
|
19 |
+
def dict2namespace(config):
|
20 |
+
namespace = argparse.Namespace()
|
21 |
+
for key, value in config.items():
|
22 |
+
if isinstance(value, dict):
|
23 |
+
new_value = dict2namespace(value)
|
24 |
+
else:
|
25 |
+
new_value = value
|
26 |
+
setattr(namespace, key, new_value)
|
27 |
+
return namespace
|
28 |
+
|
29 |
+
def load_img (filename, norm=True,):
|
30 |
+
img = np.array(Image.open(filename).convert("RGB"))
|
31 |
+
h, w = img.shape[:2]
|
32 |
+
|
33 |
+
if w > 1920 or h > 1080:
|
34 |
+
new_h, new_w = h // 4, w // 4
|
35 |
+
img = np.array(Image.fromarray(img).resize((new_w, new_h), Image.BICUBIC))
|
36 |
+
|
37 |
+
if norm:
|
38 |
+
img = img / 255.
|
39 |
+
img = img.astype(np.float32)
|
40 |
+
return img
|
41 |
+
|
42 |
+
def process_img (image):
|
43 |
+
img = np.array(image)
|
44 |
+
img = img / 255.
|
45 |
+
img = img.astype(np.float32)
|
46 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
x_hat = model(y)
|
50 |
+
|
51 |
+
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
52 |
+
restored_img = np.clip(restored_img, 0. , 1.)
|
53 |
+
|
54 |
+
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
55 |
+
#return Image.fromarray(restored_img) #
|
56 |
+
return (image, Image.fromarray(restored_img))
|
57 |
+
|
58 |
+
def load_network(net, load_path, strict=True, param_key='params'):
|
59 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
60 |
+
net = net.module
|
61 |
+
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
|
62 |
+
if param_key is not None:
|
63 |
+
if param_key not in load_net and 'params' in load_net:
|
64 |
+
param_key = 'params'
|
65 |
+
load_net = load_net[param_key]
|
66 |
+
# remove unnecessary 'module.'
|
67 |
+
for k, v in deepcopy(load_net).items():
|
68 |
+
if k.startswith('module.'):
|
69 |
+
load_net[k[7:]] = v
|
70 |
+
load_net.pop(k)
|
71 |
+
net.load_state_dict(load_net, strict=strict)
|
72 |
+
|
73 |
+
CONFIG = "configs/eval_seemore_t_x4.yml"
|
74 |
+
hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./")
|
75 |
+
MODEL_NAME = "SeemoRe_T_X4.pth"
|
76 |
+
|
77 |
+
# parse config file
|
78 |
+
with open(os.path.join(CONFIG), "r") as f:
|
79 |
+
config = yaml.safe_load(f)
|
80 |
+
|
81 |
+
cfg = dict2namespace(config)
|
82 |
+
|
83 |
+
device = torch.device("cpu")
|
84 |
+
model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans,
|
85 |
+
num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim,
|
86 |
+
img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size,
|
87 |
+
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk)
|
88 |
+
|
89 |
+
model = model.to(device)
|
90 |
+
print ("IMAGE MODEL CKPT:", MODEL_NAME)
|
91 |
+
load_network(model, MODEL_NAME, strict=True, param_key='params')
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
title = "See More Details"
|
97 |
+
description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria
|
98 |
+
|
99 |
+
#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
|
100 |
+
|
101 |
+
#### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
|
102 |
+
#### **<sup>*</sup> Corresponding authors**
|
103 |
+
|
104 |
+
<details>
|
105 |
+
<summary> <b> Abstract</b> (click me to read)</summary>
|
106 |
+
<p>
|
107 |
+
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
|
108 |
+
</p>
|
109 |
+
</details>
|
110 |
+
|
111 |
+
|
112 |
+
#### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
|
113 |
+
|
114 |
+
<br>
|
115 |
+
|
116 |
+
<code>
|
117 |
+
@inproceedings{zamfir2024details,
|
118 |
+
title={See More Details: Efficient Image Super-Resolution by Experts Mining},
|
119 |
+
author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
|
120 |
+
booktitle={International Conference on Machine Learning},
|
121 |
+
year={2024},
|
122 |
+
organization={PMLR}
|
123 |
+
}
|
124 |
+
</code>
|
125 |
+
<br>
|
126 |
+
'''
|
127 |
+
|
128 |
+
|
129 |
+
article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"
|
130 |
+
|
131 |
+
#### Image,Prompts examples
|
132 |
+
examples = [
|
133 |
+
['images/0801x4.png'],
|
134 |
+
['images/0840x4.png'],
|
135 |
+
['images/0841x4.png'],
|
136 |
+
['images/0870x4.png'],
|
137 |
+
['images/0878x4.png'],
|
138 |
+
['images/0884x4.png'],
|
139 |
+
['images/0900x4.png'],
|
140 |
+
['images/img002x4.png'],
|
141 |
+
['images/img003x4.png'],
|
142 |
+
['images/img004x4.png'],
|
143 |
+
['images/img035x4.png'],
|
144 |
+
['images/img053x4.png'],
|
145 |
+
['images/img064x4.png'],
|
146 |
+
['images/img083x4.png'],
|
147 |
+
['images/img092x4.png'],
|
148 |
+
]
|
149 |
+
|
150 |
+
css = """
|
151 |
+
.image-frame img, .image-container img {
|
152 |
+
width: auto;
|
153 |
+
height: auto;
|
154 |
+
max-width: none;
|
155 |
+
}
|
156 |
+
"""
|
157 |
+
|
158 |
+
demo = gr.Interface(
|
159 |
+
fn=process_img,
|
160 |
+
inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png"),],
|
161 |
+
outputs=ImageSlider(label="Super-Resolved Image",
|
162 |
+
type="pil",
|
163 |
+
show_download_button=True,
|
164 |
+
), #[gr.Image(type="pil", label="Ouput", min_width=500)],
|
165 |
+
title=title,
|
166 |
+
description=description,
|
167 |
+
article=article,
|
168 |
+
examples=examples,
|
169 |
+
css=css,
|
170 |
+
)
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
demo.launch()
|