Zheng-MJ commited on
Commit
c2cb492
·
verified ·
1 Parent(s): 04eb93e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -21
app.py CHANGED
@@ -71,8 +71,7 @@ def load_network(net, load_path, strict=True, param_key='params'):
71
  net.load_state_dict(load_net, strict=strict)
72
 
73
  CONFIG = "configs/SMFANet_plus_x4SR.yml"
74
- # hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./")
75
- MODEL_NAME = "pth/SMFANet_DF2K_100w_x4SR.pth"
76
 
77
  # parse config file
78
  with open(os.path.join(CONFIG), "r") as f:
@@ -91,19 +90,11 @@ load_network(model, MODEL_NAME, strict=True, param_key='params')
91
 
92
 
93
  title = "See More Details"
94
- description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria
95
 
96
- #### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
97
 
98
- #### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
99
- #### **<sup>*</sup> Corresponding authors**
100
-
101
- <details>
102
- <summary> <b> Abstract</b> (click me to read)</summary>
103
- <p>
104
- Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
105
- </p>
106
- </details>
107
 
108
 
109
  #### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
@@ -111,19 +102,18 @@ Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses
111
  <br>
112
 
113
  <code>
114
- @inproceedings{zamfir2024details,
115
- title={See More Details: Efficient Image Super-Resolution by Experts Mining},
116
- author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
117
- booktitle={International Conference on Machine Learning},
118
- year={2024},
119
- organization={PMLR}
120
- }
121
  </code>
122
  <br>
123
  '''
124
 
125
 
126
- article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"
127
 
128
  #### Image,Prompts examples
129
  examples = [
 
71
  net.load_state_dict(load_net, strict=strict)
72
 
73
  CONFIG = "configs/SMFANet_plus_x4SR.yml"
74
+ MODEL_NAME = "pth/SMFANet_plus_DF2K_100w_x4SR.pth"
 
75
 
76
  # parse config file
77
  with open(os.path.join(CONFIG), "r") as f:
 
90
 
91
 
92
  title = "See More Details"
93
+ description = ''' ### [ECCV 2024] SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution
94
 
95
+ #### [Mingjun Zheng](https://github.com/Zheng-MJ), [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), and [Jinshan Pan](https://jspan.github.io/)
96
 
97
+ #### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
 
 
 
 
 
 
 
 
98
 
99
 
100
  #### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
 
102
  <br>
103
 
104
  <code>
105
+ @inproceedings{smfanet,
106
+ title={SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution},
107
+ author={Zheng, Mingjun and Sun, Long and Dong, Jiangxin and Pan, Jinshan},
108
+ booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
109
+ year={2024}
110
+ }
 
111
  </code>
112
  <br>
113
  '''
114
 
115
 
116
+ article = "<p style='text-align: center'><a href='https://raw.githubusercontent.com/Zheng-MJ/SMFANet' target='_blank'>SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution </a></p>"
117
 
118
  #### Image,Prompts examples
119
  examples = [