File size: 14,468 Bytes
b7c176b
762c88c
e9b69e6
 
 
762c88c
 
 
9ba7304
762c88c
 
 
86e6120
 
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
9ba7304
762c88c
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
9ba7304
 
 
762c88c
 
 
 
9ba7304
762c88c
 
9ba7304
762c88c
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
 
762c88c
 
 
9ba7304
762c88c
 
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
9ba7304
 
762c88c
 
 
 
 
9ba7304
762c88c
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
 
 
 
0e83cff
 
 
307f924
97432d9
0e83cff
5f7649b
307f924
 
97432d9
5f7649b
 
 
 
307f924
0e83cff
762c88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7304
762c88c
9ba7304
762c88c
 
a2308ba
 
762c88c
 
9ba7304
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import spaces
from pickle import FALSE
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from sam2point import dataset
import sam2point.configs as configs
from demo_utils import run_demo, create_box

samples = {
  "3D Indoor Scene - S3DIS": ["Conference Room", "Restroom", "Lobby", "Office1", "Office2"],
  "3D Indoor Scene - ScanNet": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6"],
  "3D Raw LiDAR - KITTI": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6"],
  "3D Outdoor Scene - Semantic3D": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6", "Scene7"],
  "3D Object - Objaverse": ["Plant", "Lego", "Lock", "Eleplant", "Knife Rest", "Skateboard", "Popcorn Machine", "Stove", "Bus Shelter", "Thor Hammer", "Horse"],
}

PATH = {
   "S3DIS": ['Area_1_conferenceRoom_1.txt', 'Area_2_WC_1.txt', 'Area_4_lobby_2.txt', 'Area_5_office_3.txt', 'Area_6_office_9.txt'],
   "ScanNet": ['scene0005_01.pth', 'scene0010_01.pth', 'scene0016_02.pth', 'scene0019_01.pth', 'scene0000_00.pth', 'scene0002_00.pth'],
   "Objaverse": ["plant.npy", "human.npy", "lock.npy", "elephant.npy", "knife_rest.npy", "skateboard.npy", "popcorn_machine.npy", "stove.npy", "bus_shelter.npy", "thor_hammer.npy", "horse.npy"],
   "KITTI": ["scene1.npy", "scene2.npy", "scene3.npy", "scene4.npy", "scene5.npy", "scene6.npy"],
   "Semantic3D": ["scene1.npy", "scene2.npy", "patch19.npy", "patch0.npy", "patch1.npy", "patch50.npy", "patch62.npy"]
}

prompt_types = ["Point", "Box", "Mask"]

def load_3d_scene(name, sample_idx=-1, type_=None, prompt=None, final=False, new_color=None):
   DATASET = name.split('-')[1].replace(" ", "")
   path = 'data/' + DATASET + '/' + PATH[DATASET][sample_idx]
   asp, SIZE = 1., 1

   print(path)
   if DATASET == 'S3DIS':
       point, color = dataset.load_S3DIS_sample(path, sample=True)
       alpha = 1
   elif DATASET == 'ScanNet':
       point, color = dataset.load_ScanNet_sample(path)
       alpha = 1
   elif DATASET == 'Objaverse':
       point, color = dataset.load_Objaverse_sample(path)
       alpha = 1
       SIZE = 2
   elif DATASET == 'KITTI':
       point, color = dataset.load_KITTI_sample(path)
       asp = 0.3
       alpha = 0.7
   elif DATASET == 'Semantic3D':
       point, color = dataset.load_Semantic3D_sample(path, sample_idx, sample=True)
       alpha = 0.2
   print("Loading Dataset:", DATASET, "Point Cloud Size:", point.shape, "Path:", path)

   ##### Initial Show #####
   if not type_:
       if point.shape[0] > 100000:  # sample points for speeding up
           indices = np.random.choice(point.shape[0], 100000, replace=False)
           point = point[indices]
           color = color[indices]
       fig = go.Figure(
           data=[
               go.Scatter3d(
                   x=point[:,0], y=point[:,1], z=point[:,2],
                   mode='markers',
                   marker=dict(size=SIZE, color=color, opacity=alpha),
                   name=""
               )
           ],
           layout=dict(
               scene=dict(
                   xaxis=dict(visible=False),
                   yaxis=dict(visible=False),
                   zaxis=dict(visible=False),
                   aspectratio=dict(x=1, y=1, z=asp), 
                   camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
               )
           )
       )
       return fig
   ##### Final Results #####
   if final:
       color = new_color
       green = np.array([[0.1, 0.1, 0.1]])
       add_green = go.Scatter3d(
           x=green[:,0], y=green[:,1], z=green[:,2],
           mode='markers',
           marker=dict(size=0.0001, color='green', opacity=1),
           name="Segmentation Results"
       )
   if type_ == "box":  
       if point.shape[0] > 100000:
           indices = np.random.choice(point.shape[0], 100000, replace=False)
           point = point[indices]
           color = color[indices]
       scatter = go.Scatter3d(
           x=point[:,0], y=point[:,1], z=point[:,2],
           mode='markers',
           marker=dict(size=SIZE, color=color, opacity=alpha),
           name="3D Object/Scene"
       )
       if final: scatter = [scatter, add_green] + create_box(prompt)
       else: scatter = [scatter] + create_box(prompt)
   elif type_ == "point":
       prompt = np.array([prompt])
       new = go.Scatter3d(
               x=prompt[:,0], y=prompt[:,1], z=prompt[:,2],
               mode='markers',
               marker=dict(size=5, color='red', opacity=1),
               name="Point Prompt"
       )
       if point.shape[0] > 100000:
           indices = np.random.choice(point.shape[0], 100000, replace=False)
           point = point[indices]
           color = color[indices]
       scatter = go.Scatter3d(
           x=point[:,0], y=point[:,1], z=point[:,2],
           mode='markers',
           marker=dict(size=SIZE, color=color, opacity=alpha),
           name="3D Object/Scene"
       )
       if final:   scatter = [scatter, new, add_green]
       else:       scatter = [scatter, new]
   elif type_ == 'mask' and not final:
       color = np.clip(prompt * 255, 0, 255).astype(np.uint8)
       if point.shape[0] > 100000:
           indices = np.random.choice(point.shape[0], 100000, replace=False)
           point = point[indices]
           color = color[indices]
       scatter = go.Scatter3d(
           x=point[:,0], y=point[:,1], z=point[:,2],
           mode='markers',
           marker=dict(size=SIZE, color=color, opacity=alpha),
           name="3D Object/Scene"
       )
       red = np.array([[0.1, 0.1, 0.1]])
       add_red = go.Scatter3d(
           x=red[:,0], y=red[:,1], z=red[:,2],
           mode='markers',
           marker=dict(size=0.0001, color='red', opacity=1),
           name="Mask Prompt"
       )
       scatter = [scatter, add_red]
   elif type_ == 'mask' and final:
       if point.shape[0] > 100000:
           indices = np.random.choice(point.shape[0], 100000, replace=False)
           point = point[indices]
           color = color[indices]
       scatter = go.Scatter3d(
           x=point[:,0], y=point[:,1], z=point[:,2],
           mode='markers',
           marker=dict(size=SIZE, color=color, opacity=alpha),
           name="3D Object/Scene"
       )
       scatter = [scatter, add_green]
   else:  
       print("Wrong Prompt Type")
       exit(1)

   fig = go.Figure(
       data=scatter,
       layout=dict(
           scene=dict(
               xaxis=dict(visible=False),
               yaxis=dict(visible=False),
               zaxis=dict(visible=False),
               aspectratio=dict(x=1, y=1, z=asp), 
               camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
           )
       )
   )
   return fig

@spaces.GPU()
def show_prompt_in_3d(name, sample_idx, prompt_type, prompt_idx):
   if name == None or sample_idx == None or prompt_type == None or prompt_idx == None:
       return gr.Plot(), gr.Textbox(label="Response", value="Please ensure all options are selected.", visible=True)
  
   DATASET = name.split('-')[1].replace(" ", "")
   TYPE = prompt_type.lower()
   theta = 0. if DATASET in "S3DIS ScanNet" else 0.5
   mode = "bilinear" if DATASET in "S3DIS ScanNet" else 'nearest'
    
   prompt = run_demo(DATASET, TYPE, sample_idx, prompt_idx, 0.02, theta, mode, ret_prompt=True)
   fig = load_3d_scene(name, sample_idx, TYPE, prompt)
   return fig, gr.Textbox(label="Response", value="Prompt has been shown in 3D Object/Scene!", visible=True)

@spaces.GPU()
def start_segmentation(name=None, sample_idx=None, prompt_type=None, prompt_idx=None, vx=0.02):
   if name == None or sample_idx == None or prompt_type == None or prompt_idx == None:
       return gr.Plot(), gr.Textbox(label="Response", value="Please ensure all options are selected.", visible=True)
  
   DATASET = name.split('-')[1].replace(" ", "")
   TYPE = prompt_type.lower()
   theta = 0. if DATASET in "S3DIS ScanNet" else 0.5
   mode = "bilinear" if DATASET in "S3DIS ScanNet" else 'nearest'

   new_color, prompt = run_demo(DATASET, TYPE, sample_idx, prompt_idx, vx, theta, mode, ret_prompt=False)
   fig = load_3d_scene(name, sample_idx, TYPE, prompt, final=True, new_color=new_color)
   return fig, gr.Textbox(label="Response", value="Segmentation completed successfully!", visible=True)

def update1(datasets):
   if 'Objaverse' in datasets:
       return gr.Radio(label="Select 3D Object", choices=samples[datasets]), gr.Textbox(label="Response", value="", visible=True) 
   return gr.Radio(label="Select 3D Scene", choices=samples[datasets]), gr.Textbox(label="Response", value="", visible=True) 

def update2(name, sample_idx, prompt_type):
   if name == None or sample_idx == None or prompt_type == None:
       return gr.Radio(label="Select Prompt Example", choices=[]), gr.Textbox(label="Response", value="", visible=True) 
   DATASET = name.split('-')[1].replace(" ", "")
   TYPE = prompt_type.lower() + '_prompts'
    
   if DATASET == 'S3DIS':         
       info = configs.S3DIS_samples[sample_idx][TYPE]
   elif DATASET == 'ScanNet':     
       info = configs.ScanNet_samples[sample_idx][TYPE]
   elif DATASET == 'Objaverse':   
       info = configs.Objaverse_samples[sample_idx][TYPE]
   elif DATASET == 'KITTI':       
       info = configs.KITTI_samples[sample_idx][TYPE]
   elif DATASET == 'Semantic3D':  
       info = configs.Semantic3D_samples[sample_idx][TYPE]
  
   cur = ['Example ' + str(i) for i in range(1, len(info) + 1)]
   return gr.Radio(label="Select Prompt Example", choices=cur), gr.Textbox(label="Response", value="", visible=True) 
    
def update3(name, sample_idx, prompt_type, prompt_idx):
   if name == None or sample_idx == None or prompt_type == None:
       return gr.Textbox(label="Response", value="", visible=True), gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
   DATASET = name.split('-')[1].replace(" ", "")
   TYPE = configs.VOXEL[prompt_type.lower()]
    
   if DATASET in "S3DIS ScanNet": 
       vx_ = 0.02
   elif DATASET == 'Objaverse':   
       vx_ = configs.Objaverse_samples[sample_idx][TYPE][prompt_idx]
   elif DATASET == 'KITTI':       
       vx_ = configs.KITTI_samples[sample_idx][TYPE][prompt_idx]
   elif DATASET == 'Semantic3D':  
       vx_ = configs.Semantic3D_samples[sample_idx][TYPE][prompt_idx]
  
   return gr.Textbox(label="Response", value="", visible=True), gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=vx_)

def main():
   title = """<h1 style="text-align: center;">
    <div style="width: 1.2em; height: 1.2em; display: inline-block;"><img src="https://github.com/ZiyuGuo99/ZiyuGuo99.github.io/blob/main/assets/img/logo.png?raw=true" style='width: 100%; height: 100%; object-fit: contain;' /></div>
    <span style="font-variant: small-caps; font-weight: bold;">Sam2Point</span>
    </h1>
    <h3 align="center"><span style="font-variant: small-caps; ">Segment Any 3D as Videos in Zero-shot and Promptable Manners
    </span></h3>

    <div style="text-align: center;">
    <div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem; margin-bottom: 0.5rem; font-size: 1rem; flex-wrap: wrap;">
    <a href="https://github.com/ZiyuGuo99/SAM2Point/blob/main/SAM2Point.pdf" target="_blank">[Paper]</a>
    <a href="https://github.com/ZiyuGuo99/SAM2Point" target="_blank">[Code]</a>
    <a href="https://sam2point.github.io/" target="_blank">[Webpage]</a>
    </div>
    </div>
    <p style="text-align: center;">
    Select an example and a 3D prompt to start segmentation using <span style="font-variant: small-caps;">Sam2Point</span>. 
    </p>
    <p style="text-align: center;">
    Custom 3D input and prompts will be supported soon.
    </p>
    """

   with gr.Blocks(
       css="""
       .contain { display: flex; flex-direction: column; }
       .gradio-container { height: 100vh !important; }
       #col_container { height: 100%; }
       pre {
       white-space: pre-wrap;       /* Since CSS 2.1 */
       white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
       white-space: -pre-wrap;      /* Opera 4-6 */
       white-space: -o-pre-wrap;    /* Opera 7 */
       word-wrap: break-word;       /* Internet Explorer 5.5+ */
       }""",
       js="""
       function refresh() {
           const url = new URL(window.location);
           if (url.searchParams.get('__theme') !== 'light') {
               url.searchParams.set('__theme', 'light');
               window.location.href = url.href;
           }
       }""",
       title="SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners",
       theme=gr.themes.Soft()
   ) as app:
       gr.HTML(title)
       with gr.Row():
           with gr.Column(elem_id="col_container"):
               sample_dropdown = gr.Dropdown(label="Select 3D Data Type", choices=samples, type="value")
               scene_dropdown = gr.Radio(label="Select 3D Object/Scene", choices=[], type="index")
               show_button = gr.Button("Show 3D Scene/Object")
               prompt_type_dropdown = gr.Radio(label="Select Prompt Type", choices=prompt_types)
               prompt_sample_dropdown = gr.Radio(label="Select Prompt Example", choices=[], type="index")
               show_prompt_button = gr.Button("Show Prompt in 3D Scene/Object")
           with gr.Column():
               start_segment_button = gr.Button("Start Segmentation")
               plot1 = gr.Plot()

       response = gr.Textbox(label="Response")
      
       sample_dropdown.change(update1, sample_dropdown, [scene_dropdown, response])
       sample_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
       scene_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
       prompt_type_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
        
       show_button.click(load_3d_scene, inputs=[sample_dropdown, scene_dropdown], outputs=plot1)
       show_prompt_button.click(show_prompt_in_3d, inputs=[sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown], outputs=[plot1, response])
       start_segment_button.click(start_segmentation, inputs=[sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown], outputs=[plot1, response])
  
   app.queue(max_size=20, api_open=False)
   app.launch(max_threads=400)

if __name__ == "__main__":
   main()