|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <cuda.h> |
|
#include <cuda_runtime.h> |
|
#include <torch/extension.h> |
|
#include <torch/script.h> |
|
#include <vector> |
|
|
|
|
|
#define BLOCK_ROWS 16 |
|
#define BLOCK_COLS 16 |
|
|
|
namespace cc2d { |
|
|
|
template <typename T> |
|
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { |
|
return (bitmap >> pos) & 1; |
|
} |
|
|
|
__device__ int32_t find(const int32_t* s_buf, int32_t n) { |
|
while (s_buf[n] != n) |
|
n = s_buf[n]; |
|
return n; |
|
} |
|
|
|
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { |
|
const int32_t id = n; |
|
while (s_buf[n] != n) { |
|
n = s_buf[n]; |
|
s_buf[id] = n; |
|
} |
|
return n; |
|
} |
|
|
|
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { |
|
bool done; |
|
do { |
|
a = find(s_buf, a); |
|
b = find(s_buf, b); |
|
|
|
if (a < b) { |
|
int32_t old = atomicMin(s_buf + b, a); |
|
done = (old == b); |
|
b = old; |
|
} else if (b < a) { |
|
int32_t old = atomicMin(s_buf + a, b); |
|
done = (old == a); |
|
a = old; |
|
} else |
|
done = true; |
|
|
|
} while (!done); |
|
} |
|
|
|
__global__ void |
|
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row < H && col < W) |
|
label[idx] = idx; |
|
} |
|
|
|
__global__ void |
|
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row >= H || col >= W) |
|
return; |
|
|
|
uint32_t P = 0; |
|
|
|
if (img[idx]) |
|
P |= 0x777; |
|
if (row + 1 < H && img[idx + W]) |
|
P |= 0x777 << 4; |
|
if (col + 1 < W && img[idx + 1]) |
|
P |= 0x777 << 1; |
|
|
|
if (col == 0) |
|
P &= 0xEEEE; |
|
if (col + 1 >= W) |
|
P &= 0x3333; |
|
else if (col + 2 >= W) |
|
P &= 0x7777; |
|
|
|
if (row == 0) |
|
P &= 0xFFF0; |
|
if (row + 1 >= H) |
|
P &= 0xFF; |
|
|
|
if (P > 0) { |
|
|
|
|
|
if (hasBit(P, 0) && img[idx - W - 1]) { |
|
union_(label, idx, idx - 2 * W - 2); |
|
} |
|
|
|
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) |
|
union_(label, idx, idx - 2 * W); |
|
|
|
if (hasBit(P, 3) && img[idx + 2 - W]) |
|
union_(label, idx, idx - 2 * W + 2); |
|
|
|
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) |
|
union_(label, idx, idx - 2); |
|
} |
|
} |
|
|
|
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row < H && col < W) |
|
find_n_compress(label, idx); |
|
} |
|
|
|
__global__ void final_labeling( |
|
const uint8_t* img, |
|
int32_t* label, |
|
const int32_t W, |
|
const int32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row >= H || col >= W) |
|
return; |
|
|
|
int32_t y = label[idx] + 1; |
|
|
|
if (img[idx]) |
|
label[idx] = y; |
|
else |
|
label[idx] = 0; |
|
|
|
if (col + 1 < W) { |
|
if (img[idx + 1]) |
|
label[idx + 1] = y; |
|
else |
|
label[idx + 1] = 0; |
|
|
|
if (row + 1 < H) { |
|
if (img[idx + W + 1]) |
|
label[idx + W + 1] = y; |
|
else |
|
label[idx + W + 1] = 0; |
|
} |
|
} |
|
|
|
if (row + 1 < H) { |
|
if (img[idx + W]) |
|
label[idx + W] = y; |
|
else |
|
label[idx + W] = 0; |
|
} |
|
} |
|
|
|
__global__ void init_counting( |
|
const int32_t* label, |
|
int32_t* count_init, |
|
const int32_t W, |
|
const int32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row >= H || col >= W) |
|
return; |
|
|
|
int32_t y = label[idx]; |
|
if (y > 0) { |
|
int32_t count_idx = y - 1; |
|
atomicAdd(count_init + count_idx, 1); |
|
} |
|
} |
|
|
|
__global__ void final_counting( |
|
const int32_t* label, |
|
const int32_t* count_init, |
|
int32_t* count_final, |
|
const int32_t W, |
|
const int32_t H) { |
|
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); |
|
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); |
|
const uint32_t idx = row * W + col; |
|
|
|
if (row >= H || col >= W) |
|
return; |
|
|
|
int32_t y = label[idx]; |
|
if (y > 0) { |
|
int32_t count_idx = y - 1; |
|
count_final[idx] = count_init[count_idx]; |
|
} else { |
|
count_final[idx] = 0; |
|
} |
|
} |
|
|
|
} |
|
|
|
std::vector<torch::Tensor> get_connected_componnets( |
|
const torch::Tensor& inputs) { |
|
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); |
|
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); |
|
AT_ASSERTM( |
|
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); |
|
|
|
const uint32_t N = inputs.size(0); |
|
const uint32_t C = inputs.size(1); |
|
const uint32_t H = inputs.size(2); |
|
const uint32_t W = inputs.size(3); |
|
|
|
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); |
|
AT_ASSERTM((H % 2) == 0, "height must be an even number"); |
|
AT_ASSERTM((W % 2) == 0, "width must be an even number"); |
|
|
|
|
|
auto label_options = |
|
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); |
|
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); |
|
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); |
|
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); |
|
|
|
dim3 grid = dim3( |
|
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, |
|
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); |
|
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); |
|
dim3 grid_count = |
|
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); |
|
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); |
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
for (int n = 0; n < N; n++) { |
|
uint32_t offset = n * H * W; |
|
|
|
cc2d::init_labeling<<<grid, block, 0, stream>>>( |
|
labels.data_ptr<int32_t>() + offset, W, H); |
|
cc2d::merge<<<grid, block, 0, stream>>>( |
|
inputs.data_ptr<uint8_t>() + offset, |
|
labels.data_ptr<int32_t>() + offset, |
|
W, |
|
H); |
|
cc2d::compression<<<grid, block, 0, stream>>>( |
|
labels.data_ptr<int32_t>() + offset, W, H); |
|
cc2d::final_labeling<<<grid, block, 0, stream>>>( |
|
inputs.data_ptr<uint8_t>() + offset, |
|
labels.data_ptr<int32_t>() + offset, |
|
W, |
|
H); |
|
|
|
|
|
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>( |
|
labels.data_ptr<int32_t>() + offset, |
|
counts_init.data_ptr<int32_t>() + offset, |
|
W, |
|
H); |
|
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>( |
|
labels.data_ptr<int32_t>() + offset, |
|
counts_init.data_ptr<int32_t>() + offset, |
|
counts_final.data_ptr<int32_t>() + offset, |
|
W, |
|
H); |
|
} |
|
|
|
|
|
std::vector<torch::Tensor> outputs; |
|
outputs.push_back(labels); |
|
outputs.push_back(counts_final); |
|
return outputs; |
|
} |
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { |
|
m.def( |
|
"get_connected_componnets", |
|
&get_connected_componnets, |
|
"get_connected_componnets"); |
|
} |
|
|