Delete sam2point/configs copy.py
Browse files- sam2point/configs copy.py +0 -363
sam2point/configs copy.py
DELETED
@@ -1,363 +0,0 @@
|
|
1 |
-
sample_2 = {'path': 'data/S3DIS/Area_1_conferenceRoom_1.txt',
|
2 |
-
'point_prompts': [[0.01049672, 0.47400134, 0.51851852], [0.79906279, 0.88886409, 0.23477715], [0.62417994, 0.79825932, 0.01349655],
|
3 |
-
[0.15126523, 0.88886409, 0.18047709], [0.54020619, 0.52041955, 0.24670433],],
|
4 |
-
'box_prompts': [[0.03, 0.63, 0.98, 0.18, 0.78, 1.0], [0.0, 0.4, 0.0, 0.15, 0.55, 0.27], [0.2, 0.95, 0.25, 0.7, 1.0, 0.67],
|
5 |
-
[0.2, 0.2, 0.7, 0.25, 0.8, 0.78], [0.68, 0.85, 0., 1.0, 1.0, 0.25],[0, 0.82, 0.02, 0.2, 1, 0.38]],
|
6 |
-
}
|
7 |
-
|
8 |
-
|
9 |
-
sample_3 = {'path': 'data/S3DIS/Area_2_WC_1.txt',
|
10 |
-
'point_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
|
11 |
-
[0.11171063, 0.85788337, 0.18072787], [0.76159073, 0.82289417, 0.68899917],
|
12 |
-
[0.88589129, 0.59049676, 0.44830438],],
|
13 |
-
'box_prompts': [[0.35, 0.8, 0.05, 0.45, 1.0, 0.4], [0.48, 0.65, 0.0, 0.55, 0.99, 0.99], [0.57, 0.2, 0.85, 0.7, 0.48, 1.0],
|
14 |
-
[0.61, 0., 0.33, 0.71, 0.13, 0.51],], # [0.51, 0., 0., 0.61, 0.15, 0.37],
|
15 |
-
}
|
16 |
-
|
17 |
-
|
18 |
-
sample_4 = {'path': 'data/S3DIS/Area_4_lobby_2.txt',
|
19 |
-
'point_prompts': [[0.19949431, 0.28597082, 0.25131625], [0.30316056, 0.87452301, 0.33696034],
|
20 |
-
[0.72566372, 0.3617284, 0.65601966], [0.50316056, 0.57519641, 0.32186732],
|
21 |
-
[0.46396966, 0.52345679, 0.54756055],],
|
22 |
-
'box_prompts': [[0.42, 0.45, 0.3, 0.49, 0.54, 0.65], [0.45, 0.57, 0.27, 0.55, 0.63, 0.36], [0.17, 0.35, 0., 0.25, 0.4, 0.3],
|
23 |
-
[0.15, 0.25, 0.4, 0.19, 0.33, 0.62], [0.17, 0.78, 0.27, 0.2, 0.84, 0.43]],
|
24 |
-
}
|
25 |
-
|
26 |
-
sample_1 = {'path': 'data/S3DIS/Area_5_office_3.txt',
|
27 |
-
'point_prompts': [[0.55965254, 0.72432783, 0.00623636], [0.45080659, 0.88824101, 0.22856252],
|
28 |
-
[0.90161319, 0.51668286, 0.21546617], [0.36589257, 0.93683188, 0.64826941], [0.98404538, 0.29024943, 0.51013408],
|
29 |
-
[0.76369438, 0.32458698, 0.23542251]],
|
30 |
-
'box_prompts': [[0., 0.48, 0.23, 0.12, 0.61, 0.31], [0.4, 0.25, 0., 0.6, 0.6, 0.3], [0.45, 0.85, 0.45, 0.65, 0.99, 0.55],
|
31 |
-
[0.38, 0.95, 0.25, 0.48, 1.00, 0.42], [0.65, 0.45, 0., 0.75, 0.6, 0.3]],
|
32 |
-
}
|
33 |
-
|
34 |
-
sample_0 = {'path': 'data/S3DIS/Area_6_office_9.txt',
|
35 |
-
'point_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
|
36 |
-
[0.73819816, 0.913756, 0.2815835 ], [0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
|
37 |
-
[0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],
|
38 |
-
[0.338812, 0.48102965, 0.34078142]],
|
39 |
-
'box_prompts': [[0.1, 0.2, 0.0, 0.2, 0.3, 0.4], [0.1, 0.02, 0.2, 0.9, 0.2, 0.3], [0.7, 0.5, 0., 0.9, 0.7, 0.4],
|
40 |
-
[0.85, 0.3, 0.02, 0.98, 0.5, 0.8], [0.4, 0.4, 0.3, 0.6, 0.6, 0.5], ],
|
41 |
-
}
|
42 |
-
|
43 |
-
|
44 |
-
S3DIS_samples = [sample_2, sample_3, sample_4, sample_1, sample_0]
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
sample_0 = {'path': 'data/ScanNet/scene0001_01.pth',
|
50 |
-
'point_prompts': [[0.48574361, 0.70011979, 0.21237852],
|
51 |
-
[0.28947121, 0.15144145, 0.24688229], [0.3489365, 0.53977334, 0.02221746],
|
52 |
-
[0.48059669, 0.88824904, 0.25690538]], #[0.48760539, 0.12294616, 0.25476629], #[0.48738128, 0.63986588, 0.25412986],
|
53 |
-
'box_prompts': [[0.25, 0.63, 0., 0.57, 0.75, 0.37], [0.42, 0.83, 0., 0.54, 0.94, 0.3], [0.4, 0.05, 0.0, 0.53, 0.2, 0.3],
|
54 |
-
[0.12, 0.35, 0.0, 0.22, 0.45, 0.24], [0.88, 0.2, 0.1, 0.95, 0.8, 0.48]],
|
55 |
-
}
|
56 |
-
|
57 |
-
|
58 |
-
sample_1 = {'path': 'data/ScanNet/scene0005_01.pth', #[0.04293748, 0.38949549, 0.314679], [0.24069363, 0.51310396, 0.01414406],
|
59 |
-
'point_prompts': [[0.50845712, 0.4027696, 0.19570725], [0.26778319, 0.9830749, 0.44313431]], #[0.6458742, 0.33051795, 0.31433141], [0.11679079, 0.60943264, 0.40539789],
|
60 |
-
'box_prompts': [[0.6, 0.6, 0., 0.83, 0.9, 0.33], [0.0, 0.57, 0.05, 0.15, 0.67, 0.48], #[0.41, 0.65, 0., 0.56, 0.77, 0.35],
|
61 |
-
[0.48, 0.95, 0.58, 0.8, 0.99, 0.9]],
|
62 |
-
}
|
63 |
-
sample_2 = {'path': 'data/ScanNet/scene0010_01.pth',
|
64 |
-
'point_prompts': [[0.15311202, 0.44485098, 0.4582684], [0.86644632, 0.26297486, 0.5173167], [0.89919734, 0.40822271, 0.6298126 ]], #,[0.66389197, 0.49352551, 0.2987611], [0.09592603, 0.20024474, 0.67744112]
|
65 |
-
'box_prompts': [[0.6, 0.72, 0.0, 0.75, 0.85, 0.6], [0.75, 0.75, 0.5, 0.92, 0.92, 0.75], [0.05, 0.92, 0.05, 0.27, 1.0, 0.82],
|
66 |
-
[0.35, 0.03, 0.15, 0.5, 0.1, 0.42], ],
|
67 |
-
}
|
68 |
-
|
69 |
-
|
70 |
-
sample_3 = {'path': 'data/ScanNet/scene0016_02.pth',
|
71 |
-
'point_prompts': [[0.77345204, 0.5883323, 0.21049459], [0.82484114, 0.16314957, 0.23850442], [0.97325081, 0.28361404, 0.15121479],
|
72 |
-
[0.29043797, 0.58934051, 0.82521498], [0.46316043, 0.34840286, 0.01032902], [0.3637068, 0.50896871, 0.63058698]],
|
73 |
-
'box_prompts': [[0.72, 0.36, 0.1, 0.9, 0.75, 0.75], [0.86, 0.12, 0.33, 0.99, 0.24, 0.54], [0.27, 0.54, 0.7, 0.3, 0.65, 0.9],
|
74 |
-
[0.42, 0.5, 0.05, 0.55, 0.68, 0.42]],
|
75 |
-
}
|
76 |
-
|
77 |
-
|
78 |
-
sample_4 = {'path': 'data/ScanNet/scene0019_01.pth',
|
79 |
-
'point_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.79430991, 0.31488013, 0.2448331], [0.6603151, 0.26341686, 0.33537653],
|
80 |
-
[0.14427963, 0.69153076, 0.20673281], [0.17163187, 0.30585486, 0.31457961], [0.03188787, 0.65648252, 0.43863711]],
|
81 |
-
'box_prompts': [[0.55, 0.22, 0.05, 0.72, 0.3, 0.58], [0.0, 0.27, 0.05, 0.2, 0.35, 0.45], [0.03, 0.59, 0.05, 0.2, 0.85, 0.35],
|
82 |
-
[0.43, 0.65, 0.05, 0.64, 0.72, 0.65]],
|
83 |
-
}
|
84 |
-
|
85 |
-
sample_5 = {'path': 'data/ScanNet/scene0000_00.pth',
|
86 |
-
'point_prompts': [[0.37658614, 0.11185088, 0.25310564], [0.40517676, 0.7643317, 0.16952564], [0.42705029, 0.8192997, 0.17624393]],
|
87 |
-
'box_prompts': [],
|
88 |
-
}
|
89 |
-
sample_6 = {'path': 'data/ScanNet/scene0002_00.pth',
|
90 |
-
'point_prompts': [[0.56711978, 0.74271345, 0.1753805 ], [0.61877084, 0.47617316, 0.23380645]],
|
91 |
-
'box_prompts': [],
|
92 |
-
}
|
93 |
-
|
94 |
-
ScanNet_samples = [sample_1, sample_2, sample_3, sample_4, sample_5, sample_6] #sample_0,
|
95 |
-
|
96 |
-
|
97 |
-
sample_0 = {'path': 'data/Objaverse/plant.npy',
|
98 |
-
'point_prompts': [[0.50455284, 0.47794762, 0.0007253083], [0.28331658, 0.19435011, 0.77393067]], #[7006, 1458],
|
99 |
-
'voxel_size': [0.038, 0.04],
|
100 |
-
# 'voxel_size': [0.03, 0.04],
|
101 |
-
'box_prompts': [[0.08, 0.18, -0.02, 0.68, 0.73, 0.315]], #, [0, 0, 0.3, 1, 1, 1.01]], #[0.11, 0.43, 0.82, 0.5, 1.01, 1.01]],
|
102 |
-
'voxel_size_box': [0.04, 0.05], #0.01,
|
103 |
-
'mask_prompts': [[0.50455284, 0.47794762, 0.0007253083]], #[7006, 1458], , [0.28331658, 0.19435011, 0.77393067]
|
104 |
-
'voxel_size_mask': [0.038]
|
105 |
-
}
|
106 |
-
|
107 |
-
|
108 |
-
sample_1 = {'path': 'data/Objaverse/human.npy',
|
109 |
-
'point_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
|
110 |
-
'voxel_size': [0.055, 0.045, 0.05],
|
111 |
-
'box_prompts': [[0., 0.17, -0.01, 0.72, 0.80, 0.3], [-0.01, 0., 0.28, 0.8, 1, 0.82], [-0.01, 0.28, 0.89, 1, 0.72, 1.02]],
|
112 |
-
'voxel_size_box': [0.055, 0.045, 0.055],
|
113 |
-
'mask_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
|
114 |
-
'voxel_size_mask': [0.055, 0.055],
|
115 |
-
}
|
116 |
-
sample_2 = {'path': 'data/Objaverse/lock.npy',
|
117 |
-
'point_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.44947368, 0.21654338, 0.58450174]], #[1029, 2064, 3541], #, [0.67447126, 0.6777649 , 0.51486933]
|
118 |
-
'voxel_size': [0.04, 0.05, 0.05], #, 0.05
|
119 |
-
'box_prompts': [[0.61, 0.4, 0.35, 0.8, 0.8, 0.6], [0.42, -0.02, -0.02, 1.02, 0.4, 1]], #[0., 0.25, -0.02, 0.4, 0.82, 1],
|
120 |
-
'voxel_size_box': [0.04, 0.011], # 0.05, 0.04
|
121 |
-
'mask_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.9157764, 0.1995991, 0.14024617]], #[1029, 2064, 3541],
|
122 |
-
'voxel_size_mask': [0.04, 0.055, 0.04],
|
123 |
-
}
|
124 |
-
|
125 |
-
sample_3 = {'path': 'data/Objaverse/elephant.npy',
|
126 |
-
'point_prompts': [[0.4394578, 0.8342078, 0.835564]],
|
127 |
-
'voxel_size': [0.04],
|
128 |
-
'box_prompts': [[0.25,0,0,0.8,0.35,0.23]],
|
129 |
-
'voxel_size_box': [0.04],
|
130 |
-
'mask_prompts': [[0.4394578, 0.8342078, 0.835564]],
|
131 |
-
'voxel_size_mask': [0.04],
|
132 |
-
}
|
133 |
-
|
134 |
-
sample_4 = {'path': 'data/Objaverse/knife_rest.npy',
|
135 |
-
'point_prompts': [[0.3342131, 0.5378736, 0.8621972], [0.7043406, 0.4798344, 0.2585481]],
|
136 |
-
'voxel_size': [0.04, 0.04],
|
137 |
-
'box_prompts': [[0.21, 0.26, 0.83, 0.37, 0.9, 1], [0, 0, 0, 1, 1, 0.28]],
|
138 |
-
'voxel_size_box': [0.04, 0.04],
|
139 |
-
'mask_prompts': [[0.3342131, 0.5378736, 0.8621972]],
|
140 |
-
'voxel_size_mask': [0.04],
|
141 |
-
}
|
142 |
-
|
143 |
-
sample_5 = {'path': 'data/Objaverse/skateboard.npy',
|
144 |
-
'point_prompts': [[0.5026503, 0.4316724, 0.5640968], [0.2835252, 0.4883442, 0.2073544]],
|
145 |
-
'voxel_size': [0.04, 0.04],
|
146 |
-
'box_prompts': [[0, 0, 0.54, 1, 1, 1], [0.21, 0.75, 0, 0.34, 1, 0.5]],
|
147 |
-
'voxel_size_box': [0.04, 0.04],
|
148 |
-
'mask_prompts': [[0.5026503, 0.4316724, 0.5640968], [0.2835252, 0.4883442, 0.2073544]],
|
149 |
-
'voxel_size_mask': [0.04, 0.04],
|
150 |
-
}
|
151 |
-
|
152 |
-
sample_6 = {'path': 'data/Objaverse/popcorn_machine.npy',
|
153 |
-
'point_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
|
154 |
-
'voxel_size': [0.04, 0.04],
|
155 |
-
'box_prompts': [[0.208, 0.157, 0.493, 0.779, 0.89, 0.925]],
|
156 |
-
'voxel_size_box': [0.04],
|
157 |
-
'mask_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
|
158 |
-
'voxel_size_mask': [0.04, 0.04],
|
159 |
-
}
|
160 |
-
|
161 |
-
sample_7 = {'path': 'data/Objaverse/stove.npy',
|
162 |
-
'point_prompts': [[0.08, 0.72, 0.669], [0.9416, 0.3464, 0.3476], [0.021837, 0.281256, 0.8934]],
|
163 |
-
'voxel_size': [0.04, 0.04, 0.04],
|
164 |
-
'box_prompts': [[0,0,0.579,0.18,1,0.67], [0.528, 0.64, 0.508, 0.844, 0.866, 0.56]],
|
165 |
-
'voxel_size_box': [0.04, 0.04],
|
166 |
-
'mask_prompts': [[0.08, 0.72, 0.669], [0.9416, 0.3464, 0.3476], [0.021837, 0.281256, 0.8934]],
|
167 |
-
'voxel_size_mask': [0.04, 0.04, 0.04],
|
168 |
-
}
|
169 |
-
|
170 |
-
|
171 |
-
sample_8 = {'path': 'data/Objaverse/bus_shelter.npy',
|
172 |
-
'point_prompts': [[0.6665938, 0.5713098, 0.2139242], [0.577489, 0.915092, 0.4498839]],
|
173 |
-
'voxel_size': [0.04, 0.04],
|
174 |
-
'box_prompts': [[0.32, 0.36, 0, 0.924, 0.861, 0.394], [0, 0, 0.71, 1, 1, 1]],
|
175 |
-
'voxel_size_box': [0.04, 0.04],
|
176 |
-
'mask_prompts': [[0.6665938, 0.5713098, 0.2139242], [0.577489, 0.915092, 0.4498839]],
|
177 |
-
'voxel_size_mask': [0.04, 0.04],
|
178 |
-
}
|
179 |
-
|
180 |
-
sample_9 = {'path': 'data/Objaverse/thor_hammer.npy',
|
181 |
-
'point_prompts': [[0.6211515, 0.5109989, 0.3867725], [0.44443, 0.2363458, 0.7229376]],
|
182 |
-
'voxel_size': [0.05, 0.05, 0.05],
|
183 |
-
'box_prompts': [[0,0,0.723,1,1,1]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
184 |
-
'voxel_size_box': [0.05, 0.05],
|
185 |
-
'mask_prompts': [[0.44443, 0.2363458, 0.7229376]],
|
186 |
-
'voxel_size_mask': [0.05],
|
187 |
-
}
|
188 |
-
|
189 |
-
sample_10 = {'path': 'data/Objaverse/horse.npy',
|
190 |
-
'point_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
191 |
-
'voxel_size': [0.04, 0.04],
|
192 |
-
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
193 |
-
'voxel_size_box': [0.04, 0.04],
|
194 |
-
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
195 |
-
'voxel_size_mask': [0.04, 0.04],
|
196 |
-
}
|
197 |
-
|
198 |
-
sample_11 = {'path': 'data/Objaverse/dinner_booth.npy',
|
199 |
-
'point_prompts': [
|
200 |
-
[0.9192697, 0.4469184, 0.0017635],
|
201 |
-
[0.4987888, 0.6916906, 0.5106028]],
|
202 |
-
'voxel_size': [0.04, 0.04],
|
203 |
-
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
204 |
-
'voxel_size_box': [0.04, 0.04],
|
205 |
-
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
206 |
-
'voxel_size_mask': [0.04, 0.04],
|
207 |
-
}
|
208 |
-
# sculpture.npy
|
209 |
-
# horse.npy
|
210 |
-
# pipe.npy
|
211 |
-
# dinner_booth.npy
|
212 |
-
# ornament.npy
|
213 |
-
# blender.npy
|
214 |
-
# bowl.npy
|
215 |
-
# human_face.npy
|
216 |
-
# table.npy
|
217 |
-
# telescope.npy
|
218 |
-
# planet.npy
|
219 |
-
# lamp.npy
|
220 |
-
# dragon.npy
|
221 |
-
|
222 |
-
Objaverse_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6, sample_7, sample_8, sample_9, sample_10, sample_11]
|
223 |
-
# sample_1, sample_2,
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
sample_0 = {'path': 'data/KITTI/scene1.npy',
|
228 |
-
'point_prompts': [[0.5527776, 0.7294311, 0.685305 ]],
|
229 |
-
'voxel_size': [0.02],
|
230 |
-
'box_prompts': [[0.52, 0.73, 0.56, 0.57, 0.76, 0.75]],
|
231 |
-
'voxel_size_box': [0.01],
|
232 |
-
'mask_prompts': [[0.5527776, 0.7294311, 0.685305 ]],
|
233 |
-
'voxel_size_mask': [0.02],
|
234 |
-
}
|
235 |
-
|
236 |
-
|
237 |
-
sample_1 = {'path': 'data/KITTI/scene2.npy',
|
238 |
-
'point_prompts': [[0.5090489, 0.45589063, 0.49851784]],
|
239 |
-
'voxel_size': [0.015],
|
240 |
-
'box_prompts': [[0.48, 0.43, 0.34, 0.54, 0.48, 0.71]],
|
241 |
-
'voxel_size_box': [0.015],
|
242 |
-
'mask_prompts': [[0.5090489, 0.45589063, 0.49851784]],
|
243 |
-
'voxel_size_mask': [0.015],
|
244 |
-
}
|
245 |
-
|
246 |
-
|
247 |
-
sample_2 = {'path': 'data/KITTI/scene3.npy',
|
248 |
-
'point_prompts': [[0.5442487, 0.5907391, 0.5992437]],
|
249 |
-
'voxel_size': [0.01],
|
250 |
-
'box_prompts': [[0.532, 0.58, 0.37, 0.555, 0.61, 0.68]],
|
251 |
-
'voxel_size_box': [0.01],
|
252 |
-
'mask_prompts': [[0.5442487, 0.5907391, 0.5992437]],
|
253 |
-
'voxel_size_mask': [0.01],
|
254 |
-
}
|
255 |
-
|
256 |
-
sample_3 = {'path': 'kitti/scene4.npy',
|
257 |
-
'point_prompts': [[0.4739189, 0.4791307, 0.8351399]],
|
258 |
-
'voxel_size': [0.01],
|
259 |
-
'box_prompts': [[0.51, 0.2, 0.75, 0.53, 0.22, 0.9]],
|
260 |
-
'voxel_size_box': [0.01],
|
261 |
-
'mask_prompts': [[0.4739189, 0.4791307, 0.8351399], [0.4585995, 0.4209206, 0.7708794]],
|
262 |
-
'voxel_size_mask': [0.01, 0.006],
|
263 |
-
}
|
264 |
-
|
265 |
-
sample_4 = {'path': 'kitti/scene5.npy',
|
266 |
-
'point_prompts': [[0.5438917, 0.7608865, 0.5123742], [0.5131016, 0.7495122, 0.5516282]],
|
267 |
-
'voxel_size': [0.01, 0.01],
|
268 |
-
'box_prompts': [[0.43, 0.746, 0.39, 0.471,0.77, 0.62]],
|
269 |
-
'voxel_size_box': [0.01],
|
270 |
-
'mask_prompts': [[0.5438917, 0.7608865, 0.5123742], [0.5131016, 0.7495122, 0.5516282]],
|
271 |
-
'voxel_size_mask': [0.01, 0.01, 0.01],
|
272 |
-
}
|
273 |
-
|
274 |
-
sample_5 = {'path': 'kitti/scene6.npy',
|
275 |
-
'point_prompts': [[0.4619498, 0.3496694, 0.7484359], [0.4963415, 0.5221788, 0.7358279]],
|
276 |
-
'voxel_size': [0.008, 0.01],
|
277 |
-
'box_prompts': [[0.5459, 0.4, 0.62, 0.559, 0.5, 0.77], [0.61,0.343,0.625,0.664,0.377,0.8261]],
|
278 |
-
'voxel_size_box': [0.01, 0.01],
|
279 |
-
'mask_prompts': [[0.4619498, 0.3496694, 0.7484359], [0.4963415, 0.5221788, 0.7358279]],
|
280 |
-
'voxel_size_mask': [0.008, 0.01],
|
281 |
-
}
|
282 |
-
KITTI_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5]
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
sample_0 = {'path': 'data/Semantic3D/scene1.npy',
|
288 |
-
'point_prompts': [[0.08373796, 0.61115538, 0.6007256], [0.2660193, 0.823606, 0.242315]],
|
289 |
-
'voxel_size': [0.017, 0.017],
|
290 |
-
'box_prompts': [[-0.02, 0.52, -0.02, 0.1, 0.7, 0.92]],
|
291 |
-
'voxel_size_box': [0.017],
|
292 |
-
'mask_prompts': [[0.08373796, 0.61115538, 0.6007256]],
|
293 |
-
'voxel_size_mask': [0.017],
|
294 |
-
}
|
295 |
-
|
296 |
-
|
297 |
-
sample_1 = {'path': 'data/Semantic3D/scene2.npy',
|
298 |
-
'point_prompts': [[0.79984724, 0.25791535, 0.18132911]],
|
299 |
-
'voxel_size': [0.012],
|
300 |
-
'box_prompts': [[0.78, 0, -0.02, 1, 0.5, 0.2]],
|
301 |
-
'voxel_size_box': [0.012],
|
302 |
-
'mask_prompts': [[0.79984724, 0.25791535, 0.18132911]],
|
303 |
-
'voxel_size_mask': [0.012],
|
304 |
-
}
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
sample_2 = {'path': 'data/Semantic3D/patch19.npy',
|
309 |
-
'point_prompts': [[0.51970197, 0.38389998, 0.33622117],
|
310 |
-
[0.84013408, 0.80095002, 0.24210576]],
|
311 |
-
'voxel_size': [0.017, 0.017, 0.017, 0.017],
|
312 |
-
'box_prompts': [],
|
313 |
-
'voxel_size_box': [],
|
314 |
-
'mask_prompts': [[0.51970197, 0.38389998, 0.33622117],
|
315 |
-
[0.84013408, 0.80095002, 0.24210576]],
|
316 |
-
'voxel_size_mask': [0.017, 0.017],
|
317 |
-
}
|
318 |
-
|
319 |
-
sample_3 = {'path': 'data/Semantic3D/patch0.npy',
|
320 |
-
'point_prompts': [[0.91819174, 0.34150001, 0.25513778], [0., 0.34900001, 0.32881831]],
|
321 |
-
'voxel_size': [0.015, 0.017, 0.017, 0.017, 0.017, 0.017, 0.017],
|
322 |
-
'box_prompts': [],
|
323 |
-
'voxel_size_box': [],
|
324 |
-
'mask_prompts': [],
|
325 |
-
'voxel_size_mask': [],
|
326 |
-
}
|
327 |
-
|
328 |
-
sample_4 = {'path': 'data/Semantic3D/patch1.npy',
|
329 |
-
'point_prompts': [[0.51603703, 0.51312565, 0.50598845]],
|
330 |
-
'voxel_size': [0.017, 0.017, 0.017, 0.017],
|
331 |
-
'box_prompts': [],
|
332 |
-
'voxel_size_box': [],
|
333 |
-
'mask_prompts': [[0.1857393, 0.2675134, 0.2463012]], #[[0.51603703, 0.51312565, 0.50598845]],
|
334 |
-
'voxel_size_mask': [0.01], #[0.01],
|
335 |
-
}
|
336 |
-
|
337 |
-
sample_5 = {'path': 'data/Semantic3D/patch50.npy',
|
338 |
-
'point_prompts': [[0.22901525, 0.49448244, 0.52076028]],
|
339 |
-
'voxel_size': [0.017, 0.017, 0.017, 0.017],
|
340 |
-
'box_prompts': [[0.09, 0.44, 0.08, 0.4, 0.75, 0.98]],
|
341 |
-
'voxel_size_box': [0.017, 0.017],
|
342 |
-
'mask_prompts': [],
|
343 |
-
'voxel_size_mask': [],
|
344 |
-
}
|
345 |
-
|
346 |
-
|
347 |
-
sample_6 = {'path': 'data/Semantic3D/patch62.npy',
|
348 |
-
'point_prompts': [],
|
349 |
-
'voxel_size': [],
|
350 |
-
'box_prompts': [[0.26, 0.38, 0.24, 0.55, 0.78, 0.99]],
|
351 |
-
'voxel_size_box': [0.017],
|
352 |
-
'mask_prompts': [],
|
353 |
-
'voxel_size_mask': [],
|
354 |
-
}
|
355 |
-
|
356 |
-
Semantic3D_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6]
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
VOXEL = {"point": "voxel_size", "box": "voxel_size_box", "mask": "voxel_size_mask"}
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|