ZiyuG commited on
Commit
7131a27
·
verified ·
1 Parent(s): 5f7649b

Delete sam2point/configs copy.py

Browse files
Files changed (1) hide show
  1. sam2point/configs copy.py +0 -363
sam2point/configs copy.py DELETED
@@ -1,363 +0,0 @@
1
- sample_2 = {'path': 'data/S3DIS/Area_1_conferenceRoom_1.txt',
2
- 'point_prompts': [[0.01049672, 0.47400134, 0.51851852], [0.79906279, 0.88886409, 0.23477715], [0.62417994, 0.79825932, 0.01349655],
3
- [0.15126523, 0.88886409, 0.18047709], [0.54020619, 0.52041955, 0.24670433],],
4
- 'box_prompts': [[0.03, 0.63, 0.98, 0.18, 0.78, 1.0], [0.0, 0.4, 0.0, 0.15, 0.55, 0.27], [0.2, 0.95, 0.25, 0.7, 1.0, 0.67],
5
- [0.2, 0.2, 0.7, 0.25, 0.8, 0.78], [0.68, 0.85, 0., 1.0, 1.0, 0.25],[0, 0.82, 0.02, 0.2, 1, 0.38]],
6
- }
7
-
8
-
9
- sample_3 = {'path': 'data/S3DIS/Area_2_WC_1.txt',
10
- 'point_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
11
- [0.11171063, 0.85788337, 0.18072787], [0.76159073, 0.82289417, 0.68899917],
12
- [0.88589129, 0.59049676, 0.44830438],],
13
- 'box_prompts': [[0.35, 0.8, 0.05, 0.45, 1.0, 0.4], [0.48, 0.65, 0.0, 0.55, 0.99, 0.99], [0.57, 0.2, 0.85, 0.7, 0.48, 1.0],
14
- [0.61, 0., 0.33, 0.71, 0.13, 0.51],], # [0.51, 0., 0., 0.61, 0.15, 0.37],
15
- }
16
-
17
-
18
- sample_4 = {'path': 'data/S3DIS/Area_4_lobby_2.txt',
19
- 'point_prompts': [[0.19949431, 0.28597082, 0.25131625], [0.30316056, 0.87452301, 0.33696034],
20
- [0.72566372, 0.3617284, 0.65601966], [0.50316056, 0.57519641, 0.32186732],
21
- [0.46396966, 0.52345679, 0.54756055],],
22
- 'box_prompts': [[0.42, 0.45, 0.3, 0.49, 0.54, 0.65], [0.45, 0.57, 0.27, 0.55, 0.63, 0.36], [0.17, 0.35, 0., 0.25, 0.4, 0.3],
23
- [0.15, 0.25, 0.4, 0.19, 0.33, 0.62], [0.17, 0.78, 0.27, 0.2, 0.84, 0.43]],
24
- }
25
-
26
- sample_1 = {'path': 'data/S3DIS/Area_5_office_3.txt',
27
- 'point_prompts': [[0.55965254, 0.72432783, 0.00623636], [0.45080659, 0.88824101, 0.22856252],
28
- [0.90161319, 0.51668286, 0.21546617], [0.36589257, 0.93683188, 0.64826941], [0.98404538, 0.29024943, 0.51013408],
29
- [0.76369438, 0.32458698, 0.23542251]],
30
- 'box_prompts': [[0., 0.48, 0.23, 0.12, 0.61, 0.31], [0.4, 0.25, 0., 0.6, 0.6, 0.3], [0.45, 0.85, 0.45, 0.65, 0.99, 0.55],
31
- [0.38, 0.95, 0.25, 0.48, 1.00, 0.42], [0.65, 0.45, 0., 0.75, 0.6, 0.3]],
32
- }
33
-
34
- sample_0 = {'path': 'data/S3DIS/Area_6_office_9.txt',
35
- 'point_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
36
- [0.73819816, 0.913756, 0.2815835 ], [0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
37
- [0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],
38
- [0.338812, 0.48102965, 0.34078142]],
39
- 'box_prompts': [[0.1, 0.2, 0.0, 0.2, 0.3, 0.4], [0.1, 0.02, 0.2, 0.9, 0.2, 0.3], [0.7, 0.5, 0., 0.9, 0.7, 0.4],
40
- [0.85, 0.3, 0.02, 0.98, 0.5, 0.8], [0.4, 0.4, 0.3, 0.6, 0.6, 0.5], ],
41
- }
42
-
43
-
44
- S3DIS_samples = [sample_2, sample_3, sample_4, sample_1, sample_0]
45
-
46
-
47
-
48
-
49
- sample_0 = {'path': 'data/ScanNet/scene0001_01.pth',
50
- 'point_prompts': [[0.48574361, 0.70011979, 0.21237852],
51
- [0.28947121, 0.15144145, 0.24688229], [0.3489365, 0.53977334, 0.02221746],
52
- [0.48059669, 0.88824904, 0.25690538]], #[0.48760539, 0.12294616, 0.25476629], #[0.48738128, 0.63986588, 0.25412986],
53
- 'box_prompts': [[0.25, 0.63, 0., 0.57, 0.75, 0.37], [0.42, 0.83, 0., 0.54, 0.94, 0.3], [0.4, 0.05, 0.0, 0.53, 0.2, 0.3],
54
- [0.12, 0.35, 0.0, 0.22, 0.45, 0.24], [0.88, 0.2, 0.1, 0.95, 0.8, 0.48]],
55
- }
56
-
57
-
58
- sample_1 = {'path': 'data/ScanNet/scene0005_01.pth', #[0.04293748, 0.38949549, 0.314679], [0.24069363, 0.51310396, 0.01414406],
59
- 'point_prompts': [[0.50845712, 0.4027696, 0.19570725], [0.26778319, 0.9830749, 0.44313431]], #[0.6458742, 0.33051795, 0.31433141], [0.11679079, 0.60943264, 0.40539789],
60
- 'box_prompts': [[0.6, 0.6, 0., 0.83, 0.9, 0.33], [0.0, 0.57, 0.05, 0.15, 0.67, 0.48], #[0.41, 0.65, 0., 0.56, 0.77, 0.35],
61
- [0.48, 0.95, 0.58, 0.8, 0.99, 0.9]],
62
- }
63
- sample_2 = {'path': 'data/ScanNet/scene0010_01.pth',
64
- 'point_prompts': [[0.15311202, 0.44485098, 0.4582684], [0.86644632, 0.26297486, 0.5173167], [0.89919734, 0.40822271, 0.6298126 ]], #,[0.66389197, 0.49352551, 0.2987611], [0.09592603, 0.20024474, 0.67744112]
65
- 'box_prompts': [[0.6, 0.72, 0.0, 0.75, 0.85, 0.6], [0.75, 0.75, 0.5, 0.92, 0.92, 0.75], [0.05, 0.92, 0.05, 0.27, 1.0, 0.82],
66
- [0.35, 0.03, 0.15, 0.5, 0.1, 0.42], ],
67
- }
68
-
69
-
70
- sample_3 = {'path': 'data/ScanNet/scene0016_02.pth',
71
- 'point_prompts': [[0.77345204, 0.5883323, 0.21049459], [0.82484114, 0.16314957, 0.23850442], [0.97325081, 0.28361404, 0.15121479],
72
- [0.29043797, 0.58934051, 0.82521498], [0.46316043, 0.34840286, 0.01032902], [0.3637068, 0.50896871, 0.63058698]],
73
- 'box_prompts': [[0.72, 0.36, 0.1, 0.9, 0.75, 0.75], [0.86, 0.12, 0.33, 0.99, 0.24, 0.54], [0.27, 0.54, 0.7, 0.3, 0.65, 0.9],
74
- [0.42, 0.5, 0.05, 0.55, 0.68, 0.42]],
75
- }
76
-
77
-
78
- sample_4 = {'path': 'data/ScanNet/scene0019_01.pth',
79
- 'point_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.79430991, 0.31488013, 0.2448331], [0.6603151, 0.26341686, 0.33537653],
80
- [0.14427963, 0.69153076, 0.20673281], [0.17163187, 0.30585486, 0.31457961], [0.03188787, 0.65648252, 0.43863711]],
81
- 'box_prompts': [[0.55, 0.22, 0.05, 0.72, 0.3, 0.58], [0.0, 0.27, 0.05, 0.2, 0.35, 0.45], [0.03, 0.59, 0.05, 0.2, 0.85, 0.35],
82
- [0.43, 0.65, 0.05, 0.64, 0.72, 0.65]],
83
- }
84
-
85
- sample_5 = {'path': 'data/ScanNet/scene0000_00.pth',
86
- 'point_prompts': [[0.37658614, 0.11185088, 0.25310564], [0.40517676, 0.7643317, 0.16952564], [0.42705029, 0.8192997, 0.17624393]],
87
- 'box_prompts': [],
88
- }
89
- sample_6 = {'path': 'data/ScanNet/scene0002_00.pth',
90
- 'point_prompts': [[0.56711978, 0.74271345, 0.1753805 ], [0.61877084, 0.47617316, 0.23380645]],
91
- 'box_prompts': [],
92
- }
93
-
94
- ScanNet_samples = [sample_1, sample_2, sample_3, sample_4, sample_5, sample_6] #sample_0,
95
-
96
-
97
- sample_0 = {'path': 'data/Objaverse/plant.npy',
98
- 'point_prompts': [[0.50455284, 0.47794762, 0.0007253083], [0.28331658, 0.19435011, 0.77393067]], #[7006, 1458],
99
- 'voxel_size': [0.038, 0.04],
100
- # 'voxel_size': [0.03, 0.04],
101
- 'box_prompts': [[0.08, 0.18, -0.02, 0.68, 0.73, 0.315]], #, [0, 0, 0.3, 1, 1, 1.01]], #[0.11, 0.43, 0.82, 0.5, 1.01, 1.01]],
102
- 'voxel_size_box': [0.04, 0.05], #0.01,
103
- 'mask_prompts': [[0.50455284, 0.47794762, 0.0007253083]], #[7006, 1458], , [0.28331658, 0.19435011, 0.77393067]
104
- 'voxel_size_mask': [0.038]
105
- }
106
-
107
-
108
- sample_1 = {'path': 'data/Objaverse/human.npy',
109
- 'point_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
110
- 'voxel_size': [0.055, 0.045, 0.05],
111
- 'box_prompts': [[0., 0.17, -0.01, 0.72, 0.80, 0.3], [-0.01, 0., 0.28, 0.8, 1, 0.82], [-0.01, 0.28, 0.89, 1, 0.72, 1.02]],
112
- 'voxel_size_box': [0.055, 0.045, 0.055],
113
- 'mask_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
114
- 'voxel_size_mask': [0.055, 0.055],
115
- }
116
- sample_2 = {'path': 'data/Objaverse/lock.npy',
117
- 'point_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.44947368, 0.21654338, 0.58450174]], #[1029, 2064, 3541], #, [0.67447126, 0.6777649 , 0.51486933]
118
- 'voxel_size': [0.04, 0.05, 0.05], #, 0.05
119
- 'box_prompts': [[0.61, 0.4, 0.35, 0.8, 0.8, 0.6], [0.42, -0.02, -0.02, 1.02, 0.4, 1]], #[0., 0.25, -0.02, 0.4, 0.82, 1],
120
- 'voxel_size_box': [0.04, 0.011], # 0.05, 0.04
121
- 'mask_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.9157764, 0.1995991, 0.14024617]], #[1029, 2064, 3541],
122
- 'voxel_size_mask': [0.04, 0.055, 0.04],
123
- }
124
-
125
- sample_3 = {'path': 'data/Objaverse/elephant.npy',
126
- 'point_prompts': [[0.4394578, 0.8342078, 0.835564]],
127
- 'voxel_size': [0.04],
128
- 'box_prompts': [[0.25,0,0,0.8,0.35,0.23]],
129
- 'voxel_size_box': [0.04],
130
- 'mask_prompts': [[0.4394578, 0.8342078, 0.835564]],
131
- 'voxel_size_mask': [0.04],
132
- }
133
-
134
- sample_4 = {'path': 'data/Objaverse/knife_rest.npy',
135
- 'point_prompts': [[0.3342131, 0.5378736, 0.8621972], [0.7043406, 0.4798344, 0.2585481]],
136
- 'voxel_size': [0.04, 0.04],
137
- 'box_prompts': [[0.21, 0.26, 0.83, 0.37, 0.9, 1], [0, 0, 0, 1, 1, 0.28]],
138
- 'voxel_size_box': [0.04, 0.04],
139
- 'mask_prompts': [[0.3342131, 0.5378736, 0.8621972]],
140
- 'voxel_size_mask': [0.04],
141
- }
142
-
143
- sample_5 = {'path': 'data/Objaverse/skateboard.npy',
144
- 'point_prompts': [[0.5026503, 0.4316724, 0.5640968], [0.2835252, 0.4883442, 0.2073544]],
145
- 'voxel_size': [0.04, 0.04],
146
- 'box_prompts': [[0, 0, 0.54, 1, 1, 1], [0.21, 0.75, 0, 0.34, 1, 0.5]],
147
- 'voxel_size_box': [0.04, 0.04],
148
- 'mask_prompts': [[0.5026503, 0.4316724, 0.5640968], [0.2835252, 0.4883442, 0.2073544]],
149
- 'voxel_size_mask': [0.04, 0.04],
150
- }
151
-
152
- sample_6 = {'path': 'data/Objaverse/popcorn_machine.npy',
153
- 'point_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
154
- 'voxel_size': [0.04, 0.04],
155
- 'box_prompts': [[0.208, 0.157, 0.493, 0.779, 0.89, 0.925]],
156
- 'voxel_size_box': [0.04],
157
- 'mask_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
158
- 'voxel_size_mask': [0.04, 0.04],
159
- }
160
-
161
- sample_7 = {'path': 'data/Objaverse/stove.npy',
162
- 'point_prompts': [[0.08, 0.72, 0.669], [0.9416, 0.3464, 0.3476], [0.021837, 0.281256, 0.8934]],
163
- 'voxel_size': [0.04, 0.04, 0.04],
164
- 'box_prompts': [[0,0,0.579,0.18,1,0.67], [0.528, 0.64, 0.508, 0.844, 0.866, 0.56]],
165
- 'voxel_size_box': [0.04, 0.04],
166
- 'mask_prompts': [[0.08, 0.72, 0.669], [0.9416, 0.3464, 0.3476], [0.021837, 0.281256, 0.8934]],
167
- 'voxel_size_mask': [0.04, 0.04, 0.04],
168
- }
169
-
170
-
171
- sample_8 = {'path': 'data/Objaverse/bus_shelter.npy',
172
- 'point_prompts': [[0.6665938, 0.5713098, 0.2139242], [0.577489, 0.915092, 0.4498839]],
173
- 'voxel_size': [0.04, 0.04],
174
- 'box_prompts': [[0.32, 0.36, 0, 0.924, 0.861, 0.394], [0, 0, 0.71, 1, 1, 1]],
175
- 'voxel_size_box': [0.04, 0.04],
176
- 'mask_prompts': [[0.6665938, 0.5713098, 0.2139242], [0.577489, 0.915092, 0.4498839]],
177
- 'voxel_size_mask': [0.04, 0.04],
178
- }
179
-
180
- sample_9 = {'path': 'data/Objaverse/thor_hammer.npy',
181
- 'point_prompts': [[0.6211515, 0.5109989, 0.3867725], [0.44443, 0.2363458, 0.7229376]],
182
- 'voxel_size': [0.05, 0.05, 0.05],
183
- 'box_prompts': [[0,0,0.723,1,1,1]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
184
- 'voxel_size_box': [0.05, 0.05],
185
- 'mask_prompts': [[0.44443, 0.2363458, 0.7229376]],
186
- 'voxel_size_mask': [0.05],
187
- }
188
-
189
- sample_10 = {'path': 'data/Objaverse/horse.npy',
190
- 'point_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
191
- 'voxel_size': [0.04, 0.04],
192
- 'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
193
- 'voxel_size_box': [0.04, 0.04],
194
- 'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
195
- 'voxel_size_mask': [0.04, 0.04],
196
- }
197
-
198
- sample_11 = {'path': 'data/Objaverse/dinner_booth.npy',
199
- 'point_prompts': [
200
- [0.9192697, 0.4469184, 0.0017635],
201
- [0.4987888, 0.6916906, 0.5106028]],
202
- 'voxel_size': [0.04, 0.04],
203
- 'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
204
- 'voxel_size_box': [0.04, 0.04],
205
- 'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
206
- 'voxel_size_mask': [0.04, 0.04],
207
- }
208
- # sculpture.npy
209
- # horse.npy
210
- # pipe.npy
211
- # dinner_booth.npy
212
- # ornament.npy
213
- # blender.npy
214
- # bowl.npy
215
- # human_face.npy
216
- # table.npy
217
- # telescope.npy
218
- # planet.npy
219
- # lamp.npy
220
- # dragon.npy
221
-
222
- Objaverse_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6, sample_7, sample_8, sample_9, sample_10, sample_11]
223
- # sample_1, sample_2,
224
-
225
-
226
-
227
- sample_0 = {'path': 'data/KITTI/scene1.npy',
228
- 'point_prompts': [[0.5527776, 0.7294311, 0.685305 ]],
229
- 'voxel_size': [0.02],
230
- 'box_prompts': [[0.52, 0.73, 0.56, 0.57, 0.76, 0.75]],
231
- 'voxel_size_box': [0.01],
232
- 'mask_prompts': [[0.5527776, 0.7294311, 0.685305 ]],
233
- 'voxel_size_mask': [0.02],
234
- }
235
-
236
-
237
- sample_1 = {'path': 'data/KITTI/scene2.npy',
238
- 'point_prompts': [[0.5090489, 0.45589063, 0.49851784]],
239
- 'voxel_size': [0.015],
240
- 'box_prompts': [[0.48, 0.43, 0.34, 0.54, 0.48, 0.71]],
241
- 'voxel_size_box': [0.015],
242
- 'mask_prompts': [[0.5090489, 0.45589063, 0.49851784]],
243
- 'voxel_size_mask': [0.015],
244
- }
245
-
246
-
247
- sample_2 = {'path': 'data/KITTI/scene3.npy',
248
- 'point_prompts': [[0.5442487, 0.5907391, 0.5992437]],
249
- 'voxel_size': [0.01],
250
- 'box_prompts': [[0.532, 0.58, 0.37, 0.555, 0.61, 0.68]],
251
- 'voxel_size_box': [0.01],
252
- 'mask_prompts': [[0.5442487, 0.5907391, 0.5992437]],
253
- 'voxel_size_mask': [0.01],
254
- }
255
-
256
- sample_3 = {'path': 'kitti/scene4.npy',
257
- 'point_prompts': [[0.4739189, 0.4791307, 0.8351399]],
258
- 'voxel_size': [0.01],
259
- 'box_prompts': [[0.51, 0.2, 0.75, 0.53, 0.22, 0.9]],
260
- 'voxel_size_box': [0.01],
261
- 'mask_prompts': [[0.4739189, 0.4791307, 0.8351399], [0.4585995, 0.4209206, 0.7708794]],
262
- 'voxel_size_mask': [0.01, 0.006],
263
- }
264
-
265
- sample_4 = {'path': 'kitti/scene5.npy',
266
- 'point_prompts': [[0.5438917, 0.7608865, 0.5123742], [0.5131016, 0.7495122, 0.5516282]],
267
- 'voxel_size': [0.01, 0.01],
268
- 'box_prompts': [[0.43, 0.746, 0.39, 0.471,0.77, 0.62]],
269
- 'voxel_size_box': [0.01],
270
- 'mask_prompts': [[0.5438917, 0.7608865, 0.5123742], [0.5131016, 0.7495122, 0.5516282]],
271
- 'voxel_size_mask': [0.01, 0.01, 0.01],
272
- }
273
-
274
- sample_5 = {'path': 'kitti/scene6.npy',
275
- 'point_prompts': [[0.4619498, 0.3496694, 0.7484359], [0.4963415, 0.5221788, 0.7358279]],
276
- 'voxel_size': [0.008, 0.01],
277
- 'box_prompts': [[0.5459, 0.4, 0.62, 0.559, 0.5, 0.77], [0.61,0.343,0.625,0.664,0.377,0.8261]],
278
- 'voxel_size_box': [0.01, 0.01],
279
- 'mask_prompts': [[0.4619498, 0.3496694, 0.7484359], [0.4963415, 0.5221788, 0.7358279]],
280
- 'voxel_size_mask': [0.008, 0.01],
281
- }
282
- KITTI_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5]
283
-
284
-
285
-
286
-
287
- sample_0 = {'path': 'data/Semantic3D/scene1.npy',
288
- 'point_prompts': [[0.08373796, 0.61115538, 0.6007256], [0.2660193, 0.823606, 0.242315]],
289
- 'voxel_size': [0.017, 0.017],
290
- 'box_prompts': [[-0.02, 0.52, -0.02, 0.1, 0.7, 0.92]],
291
- 'voxel_size_box': [0.017],
292
- 'mask_prompts': [[0.08373796, 0.61115538, 0.6007256]],
293
- 'voxel_size_mask': [0.017],
294
- }
295
-
296
-
297
- sample_1 = {'path': 'data/Semantic3D/scene2.npy',
298
- 'point_prompts': [[0.79984724, 0.25791535, 0.18132911]],
299
- 'voxel_size': [0.012],
300
- 'box_prompts': [[0.78, 0, -0.02, 1, 0.5, 0.2]],
301
- 'voxel_size_box': [0.012],
302
- 'mask_prompts': [[0.79984724, 0.25791535, 0.18132911]],
303
- 'voxel_size_mask': [0.012],
304
- }
305
-
306
-
307
-
308
- sample_2 = {'path': 'data/Semantic3D/patch19.npy',
309
- 'point_prompts': [[0.51970197, 0.38389998, 0.33622117],
310
- [0.84013408, 0.80095002, 0.24210576]],
311
- 'voxel_size': [0.017, 0.017, 0.017, 0.017],
312
- 'box_prompts': [],
313
- 'voxel_size_box': [],
314
- 'mask_prompts': [[0.51970197, 0.38389998, 0.33622117],
315
- [0.84013408, 0.80095002, 0.24210576]],
316
- 'voxel_size_mask': [0.017, 0.017],
317
- }
318
-
319
- sample_3 = {'path': 'data/Semantic3D/patch0.npy',
320
- 'point_prompts': [[0.91819174, 0.34150001, 0.25513778], [0., 0.34900001, 0.32881831]],
321
- 'voxel_size': [0.015, 0.017, 0.017, 0.017, 0.017, 0.017, 0.017],
322
- 'box_prompts': [],
323
- 'voxel_size_box': [],
324
- 'mask_prompts': [],
325
- 'voxel_size_mask': [],
326
- }
327
-
328
- sample_4 = {'path': 'data/Semantic3D/patch1.npy',
329
- 'point_prompts': [[0.51603703, 0.51312565, 0.50598845]],
330
- 'voxel_size': [0.017, 0.017, 0.017, 0.017],
331
- 'box_prompts': [],
332
- 'voxel_size_box': [],
333
- 'mask_prompts': [[0.1857393, 0.2675134, 0.2463012]], #[[0.51603703, 0.51312565, 0.50598845]],
334
- 'voxel_size_mask': [0.01], #[0.01],
335
- }
336
-
337
- sample_5 = {'path': 'data/Semantic3D/patch50.npy',
338
- 'point_prompts': [[0.22901525, 0.49448244, 0.52076028]],
339
- 'voxel_size': [0.017, 0.017, 0.017, 0.017],
340
- 'box_prompts': [[0.09, 0.44, 0.08, 0.4, 0.75, 0.98]],
341
- 'voxel_size_box': [0.017, 0.017],
342
- 'mask_prompts': [],
343
- 'voxel_size_mask': [],
344
- }
345
-
346
-
347
- sample_6 = {'path': 'data/Semantic3D/patch62.npy',
348
- 'point_prompts': [],
349
- 'voxel_size': [],
350
- 'box_prompts': [[0.26, 0.38, 0.24, 0.55, 0.78, 0.99]],
351
- 'voxel_size_box': [0.017],
352
- 'mask_prompts': [],
353
- 'voxel_size_mask': [],
354
- }
355
-
356
- Semantic3D_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6]
357
-
358
-
359
-
360
-
361
- VOXEL = {"point": "voxel_size", "box": "voxel_size_box", "mask": "voxel_size_mask"}
362
-
363
-