import os import cv2 import shutil import numpy as np import torch def build_fold(path): if os.path.exists(path): return True # shutil.rmtree(path) # return True os.makedirs(path) return False def visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, point_coords, resolution, name, args=None): os.makedirs(name + 'frames_seg', exist_ok=True) a0_dir, a1_dir, a2_dir = name + 'frames_seg/x', name + 'frames_seg/y', name + 'frames_seg/z' # build_fold(a1_dir) # build_fold(a2_dir) a0_mask, a1_mask, a2_mask = a0_mask.repeat(1, 3, 1, 1), a1_mask.repeat(1, 3, 1, 1), a2_mask.repeat(1, 3, 1, 1) a0_mask[:, 1:], a1_mask[:, 1:], a2_mask[:, 1:] = a0_mask[:, 1:] * 0, a1_mask[:, 1:] * 0, a2_mask[:, 1:] * 0 grid0, grid1, grid2 = grid0 * 0.7 + a0_mask * 0.3, grid1 * 0.7 + a1_mask * 0.3, grid2 * 0.7 + a2_mask * 0.3 grid0[point_coords[0], :, point_coords[1], point_coords[2]] = torch.Tensor([0., 1., 0.]) grid1[point_coords[1], :, point_coords[0], point_coords[2]] = torch.Tensor([0., 1., 0.]) grid2[point_coords[2], :, point_coords[0], point_coords[1]] = torch.Tensor([0., 1., 0.]) if not build_fold(a0_dir): visualize_per_frame(grid0, a0_dir, resolution, args) if not build_fold(a1_dir): visualize_per_frame(grid1, a1_dir, resolution, args) if not build_fold(a2_dir): visualize_per_frame(grid2, a2_dir, resolution, args) def visualize_per_frame(grid, foldpath, resolution, args=None): grid = torch.nn.functional.interpolate(grid, size=(resolution, resolution), mode=args.mode) # gridb = torch.nn.functional.interpolate(grid, size=(256, 256), mode='nearest') # grid = grida * 0.8 + gridb * 0.2 imgs = grid.cpu().numpy() #print(imgs[0, :, 0:3, 0:3]) n, _, _, _ = grid.shape for ii in range(n): r = np.uint8(imgs[ii, 0, :, :]*255) g = np.uint8(imgs[ii, 1, :, :]*255) b = np.uint8(imgs[ii, 2, :, :]*255) img = cv2.merge([b, g, r]) # bilateralFilter # img = cv2.bilateralFilter(img, d=-1, sigmaColor=25, sigmaSpace=7) # img = cv2.bilateralFilter(img, d=9, sigmaColor=50, sigmaSpace=16) # img = cv2.GaussianBlur(img, (5, 5), 0) # img = cv2.medianBlur(img, 5) cv2.imwrite('{}/{}.png'.format(foldpath, ii), img) return def cal(input, points): reference_point_3d = np.array(input) distances = np.linalg.norm(points - reference_point_3d, axis=1) closest_index = np.argmin(distances) closest_point = points[closest_index] return [closest_point[0], closest_point[1], closest_point[2]]