# Codes are taken from BPNet, CVPR'21 # https://github.com/wbhu/BPNet/blob/main/dataset/voxelizer.py import collections import numpy as np from sam2point.voxelization_utils import sparse_quantize from scipy.linalg import expm, norm # Rotation matrix along axis with angle theta def M(axis, theta): return expm(np.cross(np.eye(3), axis / norm(axis) * theta)) class Voxelizer: def __init__(self, voxel_size=1, clip_bound=None, use_augmentation=False, scale_augmentation_bound=None, rotation_augmentation_bound=None, translation_augmentation_ratio_bound=None, ignore_label=255): ''' Args: voxel_size: side length of a voxel clip_bound: boundary of the voxelizer. Points outside the bound will be deleted expects either None or an array like ((-100, 100), (-100, 100), (-100, 100)). scale_augmentation_bound: None or (0.9, 1.1) rotation_augmentation_bound: None or ((np.pi / 6, np.pi / 6), None, None) for 3 axis. Use random order of x, y, z to prevent bias. translation_augmentation_bound: ((-5, 5), (0, 0), (-10, 10)) ignore_label: label assigned for ignore (not a training label). ''' self.voxel_size = voxel_size self.clip_bound = clip_bound self.ignore_label = ignore_label # Augmentation self.use_augmentation = use_augmentation self.scale_augmentation_bound = scale_augmentation_bound self.rotation_augmentation_bound = rotation_augmentation_bound self.translation_augmentation_ratio_bound = translation_augmentation_ratio_bound def get_transformation_matrix(self): voxelization_matrix, rotation_matrix = np.eye(4), np.eye(4) # Get clip boundary from config or pointcloud. # Get inner clip bound to crop from. # Transform pointcloud coordinate to voxel coordinate. # 1. Random rotation rot_mat = np.eye(3) if self.use_augmentation and self.rotation_augmentation_bound is not None: if isinstance(self.rotation_augmentation_bound, collections.Iterable): rot_mats = [] for axis_ind, rot_bound in enumerate(self.rotation_augmentation_bound): theta = 0 axis = np.zeros(3) axis[axis_ind] = 1 if rot_bound is not None: theta = np.random.uniform(*rot_bound) rot_mats.append(M(axis, theta)) # Use random order np.random.shuffle(rot_mats) rot_mat = rot_mats[0] @ rot_mats[1] @ rot_mats[2] else: raise ValueError() rotation_matrix[:3, :3] = rot_mat # 2. Scale and translate to the voxel space. scale = 1 / self.voxel_size if self.use_augmentation and self.scale_augmentation_bound is not None: scale *= np.random.uniform(*self.scale_augmentation_bound) np.fill_diagonal(voxelization_matrix[:3, :3], scale) # Get final transformation matrix. return voxelization_matrix, rotation_matrix def clip(self, coords, center=None, trans_aug_ratio=None): bound_min = np.min(coords, 0).astype(float) bound_max = np.max(coords, 0).astype(float) bound_size = bound_max - bound_min if center is None: center = bound_min + bound_size * 0.5 lim = self.clip_bound if trans_aug_ratio is not None: trans = np.multiply(trans_aug_ratio, bound_size) center += trans # Clip points outside the limit clip_inds = ((coords[:, 0] >= (lim[0][0] + center[0])) & (coords[:, 0] < (lim[0][1] + center[0])) & (coords[:, 1] >= (lim[1][0] + center[1])) & (coords[:, 1] < (lim[1][1] + center[1])) & (coords[:, 2] >= (lim[2][0] + center[2])) & (coords[:, 2] < (lim[2][1] + center[2]))) return clip_inds def voxelize(self, coords, feats, labels, center=None, link=None, return_ind=False): assert coords.shape[1] == 3 and coords.shape[0] == feats.shape[0] and coords.shape[0] if self.clip_bound is not None: trans_aug_ratio = np.zeros(3) if self.use_augmentation and self.translation_augmentation_ratio_bound is not None: for axis_ind, trans_ratio_bound in enumerate(self.translation_augmentation_ratio_bound): trans_aug_ratio[axis_ind] = np.random.uniform(*trans_ratio_bound) clip_inds = self.clip(coords, center, trans_aug_ratio) if clip_inds.sum(): coords, feats = coords[clip_inds], feats[clip_inds] if labels is not None: labels = labels[clip_inds] # Get rotation and scale M_v, M_r = self.get_transformation_matrix() # Apply transformations rigid_transformation = M_v if self.use_augmentation: rigid_transformation = M_r @ rigid_transformation homo_coords = np.hstack((coords, np.ones((coords.shape[0], 1), dtype=coords.dtype))) coords_aug = np.floor(homo_coords @ rigid_transformation.T[:, :3]) # Align all coordinates to the origin. min_coords = coords_aug.min(0) M_t = np.eye(4) M_t[:3, -1] = -min_coords rigid_transformation = M_t @ rigid_transformation coords_aug = np.floor(coords_aug - min_coords) inds, inds_reconstruct = sparse_quantize(coords_aug, return_index=True) coords_aug, feats, labels = coords_aug[inds], feats[inds], labels[inds] # Normal rotation if feats.shape[1] > 6: feats[:, 3:6] = feats[:, 3:6] @ (M_r[:3, :3].T) if return_ind: return coords_aug, feats, labels, np.array(inds_reconstruct), inds if link is not None: return coords_aug, feats, labels, np.array(inds_reconstruct), link[inds] return coords_aug, feats, labels, np.array(inds_reconstruct)